作业帮 > 数学 > 作业

高数填空题(极限),在区间【0,1】上函数f(x)=nx(1-x)*n 的最大值记为M(n),则lim(n->∞)M(n

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:17:55
高数填空题(极限),
在区间【0,1】上函数f(x)=nx(1-x)*n 的最大值记为M(n),则lim(n->∞)M(n)=(?)
高数填空题(极限),在区间【0,1】上函数f(x)=nx(1-x)*n 的最大值记为M(n),则lim(n->∞)M(n
f'(x)=n(1-x)^n-xn^2(1-x)^(n-1)=[n(1-x)^(n-1)]×[1-(n+1)x]
所以f(x)的驻点有两个,分别是x=1和x=1/(n+1),且x=1/(n+1)是极大值点
又因为是闭区间[0,1],所以x=1/(n+1)也是最大值点
所以M(n)=f[1/(n+1)]=[n/(n+1)]^(n+1)
所以当n→∞时:
limM(n)=lim[n/(n+1)]^(n+1)
=lim[1-1/(n+1)]^{-[-(n+1)]}=e^(-1)
=1/e
所以极限为1/e