设a、b、c≥0.且a+b+c=3,试求a^2+b^2+c^2+3/2abc的最小值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 09:19:21
设a、b、c≥0.且a+b+c=3,试求a^2+b^2+c^2+3/2abc的最小值
你是不是想求a^2+b^2+c^2+3/(2abc)的最小值?若是这样,则方法如下:
要确保a^2+b^2+c^2+3/(2abc)有意义,则:需要a、b、c均不为0,∴a、b、c均是正数.
∴a^2+b^2≧2ab,b^2+c^2≧2bc,a^2+c^2≧2ac.
∴(a^2+b^2)+(b^2+c^2)+(a^2+c^2)≧2ab+2bc+2ac,
∴2(a^2+b^2+c^2)≧2(ab+bc+ac),
∴a^2+b^2+c^2≧ab+bc+ac.
显然,当a=b=c=1时,等号成立,此时a^2+b^2+c^2取得最小值为3.
另外,a^2+b^2+c^2≧3(abc)^(1/3),∴3(abc)^(1/3)≦3,∴abc≦1.
显然,当a=b=c=1时,取等号,此时abc取得最大值,得:3/(2abc)能取得最小值为3/2.
∴当a=b=c=1时,
(a^2+b^2+c^2)与[3/(2abc)]都能取得最小值,
∴a^2+b^2+c^2+3/(2abc)的最小值=3+3/2=9/2.
注:若原题不是我所猜测的那样,则请你补充说明.
要确保a^2+b^2+c^2+3/(2abc)有意义,则:需要a、b、c均不为0,∴a、b、c均是正数.
∴a^2+b^2≧2ab,b^2+c^2≧2bc,a^2+c^2≧2ac.
∴(a^2+b^2)+(b^2+c^2)+(a^2+c^2)≧2ab+2bc+2ac,
∴2(a^2+b^2+c^2)≧2(ab+bc+ac),
∴a^2+b^2+c^2≧ab+bc+ac.
显然,当a=b=c=1时,等号成立,此时a^2+b^2+c^2取得最小值为3.
另外,a^2+b^2+c^2≧3(abc)^(1/3),∴3(abc)^(1/3)≦3,∴abc≦1.
显然,当a=b=c=1时,取等号,此时abc取得最大值,得:3/(2abc)能取得最小值为3/2.
∴当a=b=c=1时,
(a^2+b^2+c^2)与[3/(2abc)]都能取得最小值,
∴a^2+b^2+c^2+3/(2abc)的最小值=3+3/2=9/2.
注:若原题不是我所猜测的那样,则请你补充说明.
A,B,C是整数,A^2+B^3=C^4.求C的最小值,
设a,b,c大于零,且a+2b+3c=3,则1/a+1/2b+1/3c的最小值为
已知a,b,c为三个非负实数,且满足3a+2b+c=5,2a+b-3c=1设s=3a+b-7c,求s的最大值与最小值.
已知实数a,b,c,满足a+b+c=2,abc=4,求|a|+|b|+|c|的最小值
】已知实数a、b、c满足:a+b+c=2,abc=4.求|a|+|b|+|c|的最小值.
已知abc≠0且a/b=b/c=c/a,试求3a+2b+c/a-2b-3c=____.
在三角形ABC中a b c分别是三个内角A B C的对边 且a b c互不相等 设a=4 c=3 A=2C 求cosC的
已知a+b+c=1且abc都为正数.求(a+1/a)2+(b+1/b)2+(c+1/c)2的最小值
已知:a、b、c均为实数,且满足a+b+c=2,abc=4 求a、b、c中最大者的最小值
已知a、b、c均为实数,且a+b+c=0,abc=2,求|a|+|b|+|c|的最小值.
已知a/(b+2c)=b/(c+2a)=c/(a+2b),且a+b+c≠0,求(3b+c)/b的值?
设a、b、c为△ABC三边,证明:a(3a+2b+c)²-2b(b+c) +a-2b-2c≥0.