作业帮 > 数学 > 作业

导数问题求解!三角形ABC中,AB 每分钟延长 2cm, AC 每分钟延长 3cm. 两边的夹角∠A每分钟增长 1°.当

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:39:06
导数问题求解!
三角形ABC中,AB 每分钟延长 2cm, AC 每分钟延长 3cm. 两边的夹角∠A每分钟增长 1°.当AB = 40cm, AC = 75cm, ∠A = 30° 时,三角形的面积每分钟减小多少?
用三角函数导数求!跪谢!
导数问题求解!三角形ABC中,AB 每分钟延长 2cm, AC 每分钟延长 3cm. 两边的夹角∠A每分钟增长 1°.当
经过t分钟,AB=40+2t,AC=75+3t,∠A=(30+t)π/180
三角形的面积S=(1/2) (40+2t)(75+3t)sin[(30+t)π/180]= (20+t)(75+3t)sin[(30+t)π/180]
dS/dt =
(75+3t)sin[(30+t)π/180]+3(20+t)sin[(30+t)π/180]+(20+t)(75+3t)cos[(30+t)π/180]*(π/180)
在上式中令t=1
dS/dt |(t=1) = 141sin(31π/180) + 21*78π/180*cos(31π/180)
面积应该是增加不是减少
再问: 不对啊,我算出 97, 但是答案是每分钟增长90. 为什么把 t 设为1?
再答: 后面一步我算错了,重做 dS/dt的式子没错 微分dS=(dS/dt)dt 令t=0(指题目给的三角形的时刻),dt=1(指经过的时间是1分钟) ΔS≈dS =135sin(π/6)+ 25π/3 *cos(π/6) =90.1 答案90可能是取整数。另外这种题目好像与国内题目风格不太一致,似乎是外来的。