作业帮 > 数学 > 作业

正方体ABCD-A1B1C1D1中,E为棱CC1的中点求证:

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:23:25
正方体ABCD-A1B1C1D1中,E为棱CC1的中点求证:
(1)B1D1⊥AE
(2)AC∥平面B1DE.
正方体ABCD-A1B1C1D1中,E为棱CC1的中点求证:
证明:(1)连结AC,BD,∵ABCD是正方形,∴AC⊥BD,
∵CE⊥面ABCD,BD⊂面ABCD,
∴CE⊥BD,又AC∩CE=C,
∴BD⊥平面ACE,又AE⊂平面ACE,
∴BD⊥AE,
∵BD∥B1D1,∴B1D1⊥AE.
(2)取AA1的中点F,连接FB1、FD、FE,
∵FB1=DE,FD=B1E,
∴四边形B1FDE是平行四边形,即B1、F、D、E四点共面,
∵AC∥FE,且AC不在平面B1FDE内,
∴AC∥平面B1FDE,即AC∥平面B1DE.