作业帮 > 数学 > 作业

如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:10:19
如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.

(1)求证:CD是⊙O的切线;
(2)若AD=4,BC=9,求⊙O的半径R.
如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.
(1)证明:过O点作OE⊥CD于点E,
∵AM切⊙O于点A,
∴OA⊥AD,
又∵DO平分∠ADC,
∴OE=OA,
∵OA为⊙O的半径,
∴OE是⊙O的半径,且OE⊥DC,
∴CD是⊙O的切线.
(2)过点D作DF⊥BC于点F,
∵AM,BN分别切⊙O于点A,B,
∴AB⊥AD,AB⊥BC,
∴四边形ABFD是矩形,
∴AD=BF,AB=DF,
又∵AD=4,BC=9,
∴FC=9-4=5,
∵AM,BN,DC分别切⊙O于点A,B,E,
∴DA=DE,CB=CE,
∴DC=AD+BC=4+9=13,
在Rt△DFC中,DC2=DF2+FC2
∴DF=
DC2−FC2=
132−52=12,
∴AB=12,
∴⊙O的半径R是6.