三角形ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:34:10
三角形ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB
(1)求B
(2)若b=2,求三角形A,B,C面积的最大值
(1)求B
(2)若b=2,求三角形A,B,C面积的最大值
(1)
利用正弦定理:a/sinA=b/sinB=c/sinC
∵ a=bcosC+csinB
∴ sinA=sinBcosC+sinCsinB
∵ sinA=sin[π-(B+C)]=sin(B+C)
∴ sinBcosC+cosCsinB=sinBcosC+sinCsinB
∴ cosCsinB=sinCsinB
∴ tanB=1
∴ B=π/4
(2)
S=(1/2)acsinB=(√2/4)ac
利用余弦定理
4=a²+c²-2ac*cos(π/4)
∴ 4=a²+c²-√2ac≥2ac-√2ac
∴ ac≤4/(2+√2)=2(2+√2)
当且仅当a=c时等号成立
∴ S的最大值是(√2/4)*2*(2+√2)=√2+1
利用正弦定理:a/sinA=b/sinB=c/sinC
∵ a=bcosC+csinB
∴ sinA=sinBcosC+sinCsinB
∵ sinA=sin[π-(B+C)]=sin(B+C)
∴ sinBcosC+cosCsinB=sinBcosC+sinCsinB
∴ cosCsinB=sinCsinB
∴ tanB=1
∴ B=π/4
(2)
S=(1/2)acsinB=(√2/4)ac
利用余弦定理
4=a²+c²-2ac*cos(π/4)
∴ 4=a²+c²-√2ac≥2ac-√2ac
∴ ac≤4/(2+√2)=2(2+√2)
当且仅当a=c时等号成立
∴ S的最大值是(√2/4)*2*(2+√2)=√2+1
三角形ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB
三角形ABC内角A.B.C所对的分别为a.b.c,已知a=bcosC+csinB
三角形ABC在内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB(Ⅰ)求B(Ⅱ)若b=2,三角形ABC
三角形ABC的内角A.B.C的对边分别为a.b.c.已知θ,a=bcosc+csinB,若b=2,求三角形面积的最大值
已知a,b,c分别为三角形ABC三个内角A,B,C的对边,2bcosC=2a-c.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+csinB.(1).求B.(2)若b=2,求△A
已知abc分别为三角形ABC三个内角A,B,C的对边,2bcosC=2a-c.若三角形ABC的面积为√3,求b的取值范围
已知三角形ABC中,内角A,B,C 的对边的边长分别为a,b,c,且bcosC= (2a-c)cosB.(1)求角B的大
在三角形ABC中,a,b,c分别是三内角A,B,C的对边,且(2a-c)cosB-bcosC=0.
在三角形ABC中,角A,角B角C所对的边分别为a,b,c已知a=2bcosC个三角形一定是
设△ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB.
设锐角三角形ABC的内角A、B、C的对边分别为a、b、c.且bcosC=(2a-c)cosB.