在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 04:57:23
在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).
(1)BF=CG;
证明:在△ABF和△ACG中
∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC
∴△ABF≌△ACG(AAS)
∴BF=CG;
(2)DE+DF=CG;
证明:过点D作DH⊥CG于点H(如图2)
∵DE⊥BA于点E,∠G=90°,DH⊥CG
∴四边形EDHG为矩形
∴DE=HG,DH∥BG
∴∠GBC=∠HDC
∵AB=AC
∴∠FCD=∠GBC=∠HDC
又∵∠F=∠DHC=90°,CD=DC
∴△FDC≌△HCD(AAS)
∴DF=CH
∴GH+CH=DE+DF=CG,即DE+DF=CG;
(3)仍然成立.
证明:过点D作DH⊥CG于点H(如图3)
∵DE⊥BA于点E,∠G=90°,DH⊥CG
∴四边形EDHG为矩形,
∴DE=HG,DH∥BG,
∴∠GBC=∠HDC,
∵AB=AC,
∴∠FCD=∠GBC=∠HDC,
又∵∠F=∠DHC=90°,CD=DC,
∴△FDC≌△HCD(AAS)
∴DF=CH,
∴GH+CH=DE+DF=CG,
即DE+DF=CG.
证明:在△ABF和△ACG中
∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC
∴△ABF≌△ACG(AAS)
∴BF=CG;
(2)DE+DF=CG;
证明:过点D作DH⊥CG于点H(如图2)
∵DE⊥BA于点E,∠G=90°,DH⊥CG
∴四边形EDHG为矩形
∴DE=HG,DH∥BG
∴∠GBC=∠HDC
∵AB=AC
∴∠FCD=∠GBC=∠HDC
又∵∠F=∠DHC=90°,CD=DC
∴△FDC≌△HCD(AAS)
∴DF=CH
∴GH+CH=DE+DF=CG,即DE+DF=CG;
(3)仍然成立.
证明:过点D作DH⊥CG于点H(如图3)
∵DE⊥BA于点E,∠G=90°,DH⊥CG
∴四边形EDHG为矩形,
∴DE=HG,DH∥BG,
∴∠GBC=∠HDC,
∵AB=AC,
∴∠FCD=∠GBC=∠HDC,
又∵∠F=∠DHC=90°,CD=DC,
∴△FDC≌△HCD(AAS)
∴DF=CH,
∴GH+CH=DE+DF=CG,
即DE+DF=CG.
如图,已知Rt△ABC中,AB=AC,D是斜边BC的中点,将直角三角尺的直角顶点置于点D,两直角边分别与AB,AC交于点
如图:在△ABC中,∠C=90°,CA=CB=6,把三角尺的直角顶点P放在边AC上移动,两条直角边分别交边AB于点Q、边
如图,在△ABC中,AC=BC=2,∠C=90°,将一把三角尺的直角顶点放在斜边AB的中点P处,三角尺的两直角边分别交△
如图所示,在△ABC中,AB=AC,∠BAC=90°,将一直角三角尺的直角顶点P与BC 的中点重合
已知:在△ABC中AB=AC,点P在底边BC上,PE//AC,PF//AB,分别交BA,AC的延长线于点E,F
如图,在等腰△ABC中,AC=BC=10,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC于F,交CB的延长线于
如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点F,交BA的延长线于点E
在△ABC中,AB=AC,点D在BC的延长线上,DE⊥AB于E,DE⊥AC交AC的延长线于F,CG⊥AB于G,求ED,G
△ABC中AB<BC,D在AC上,CD=AB,E、F为AD、BC中点,连接EF并延长与BA的延长线交于G点,求AE=AG
关于旋转地数学题已知在△ABC中,AC=BC,∠C=90°将一块等腰直角三角尺的直角顶点放在斜边AB的中点P处,绕P旋转
如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点D,过D做直线DE垂直BC于F,且交BA的延长线于点E.
如图,在Rt△ABC中,∠ACB=90°,AB=4cm,AC=3cm,AD⊥BC,垂足为点D,把一块三角尺的直角顶点放在