如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且C
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/19 19:46:22
如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且CD=ED.
(1)求证:AC=
(1)求证:AC=
2 |
(1)证明:
连接CM,
∵△ACB是等腰直角三角形,M为AB中点,
∴AM=CM=BM,CM⊥AB,
∵EF⊥AB,CD⊥DE,
∴∠CMD=∠DFE=∠CDE=90°,
∴∠CDM+∠EDF=90°,∠CDM+∠DCM=90°,
∴∠DCM=∠EDF,
在△DCM和△EDF中
∠CMD=∠DFE
∠DCM=∠EDF
CD=DE
∴△DCM≌△EDF(AAS),
∴DF=CM,
∵△ACB中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∵∠CMA=90°,AM=CM,由勾股定理得:AC=
2CM,
∴AC=
2DF.
(2)
证明:过E作EF⊥AB交BA延长线于F,
∵由(1)知:△DCM≌△EDF,
∴EF=DM,DF=CM,CM=AM,
∴DF=AM,
∴DF-AD=AM-AD,
∴AF=DM,
∴AF=EF,
∵∠F=90°,
∴∠FAE=∠FEA=45°,
∵∠B=45°,
∴∠FAE=∠B,
∴AE∥BC.
(3)BC-AE=
6,
理由是:过E作EN∥AB交BC于N,交CM于Q,如图3,
∵AE∥BC,
∴四边形AENB是平行四边形,
∴AE=BN,
∴BC-AE=CN,
∵EF⊥AB,CM⊥AB,
∴CM∥EF,∠QMF=90°,
∵EQ∥AB,
∴四边形FEQM是矩形,
∴∠EQM=∠CQM=90°,EF=QM,
∵DM=EF,
∴QM=DM,
∵AM=CM,
∴AD=CQ=
3,
∵∠ACB=90°,AC=BC,M为AB中点,
∴∠MCB=45°,
∴∠QNC=45°=∠QCN,
∴CQ=QN=
连接CM,
∵△ACB是等腰直角三角形,M为AB中点,
∴AM=CM=BM,CM⊥AB,
∵EF⊥AB,CD⊥DE,
∴∠CMD=∠DFE=∠CDE=90°,
∴∠CDM+∠EDF=90°,∠CDM+∠DCM=90°,
∴∠DCM=∠EDF,
在△DCM和△EDF中
∠CMD=∠DFE
∠DCM=∠EDF
CD=DE
∴△DCM≌△EDF(AAS),
∴DF=CM,
∵△ACB中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∵∠CMA=90°,AM=CM,由勾股定理得:AC=
2CM,
∴AC=
2DF.
(2)
证明:过E作EF⊥AB交BA延长线于F,
∵由(1)知:△DCM≌△EDF,
∴EF=DM,DF=CM,CM=AM,
∴DF=AM,
∴DF-AD=AM-AD,
∴AF=DM,
∴AF=EF,
∵∠F=90°,
∴∠FAE=∠FEA=45°,
∵∠B=45°,
∴∠FAE=∠B,
∴AE∥BC.
(3)BC-AE=
6,
理由是:过E作EN∥AB交BC于N,交CM于Q,如图3,
∵AE∥BC,
∴四边形AENB是平行四边形,
∴AE=BN,
∴BC-AE=CN,
∵EF⊥AB,CM⊥AB,
∴CM∥EF,∠QMF=90°,
∵EQ∥AB,
∴四边形FEQM是矩形,
∴∠EQM=∠CQM=90°,EF=QM,
∵DM=EF,
∴QM=DM,
∵AM=CM,
∴AD=CQ=
3,
∵∠ACB=90°,AC=BC,M为AB中点,
∴∠MCB=45°,
∴∠QNC=45°=∠QCN,
∴CQ=QN=
如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任意一点,AE⊥CD于点E,BF⊥CD交CD的延长线与点F,
如图,已知在RT三角形ABC中,角C=90,CD垂直AB于点D,角B的平分线交CD于点E,交CA于点F,G是EF的中点,
如图,在Rt△ABC中,D是斜边AB的中点,F是AC的中点,EF∥DC,交BC的延长线于点E,求证:四边形BEFD是等腰
如图,在等腰直角三角形ABC中,∠ABC=90°,点D是AC边上的中点,过点 D作DE⊥DF,交AB于点E,交BC于点F
如图,在等腰Rt△ABC中,∠C=90º,D是斜边AB上任意一点,AE⊥CD于点E,BF⊥CD交CD的延长线于
如图在△ABC中,D是BC的中点,ED⊥BC交∠BAC的平分线于点E,EF⊥AB于点F,EG⊥AC交AC的延长线于点G.
如图,在△ABC中,D是BC边上一点,DE⊥AB于点E,DF⊥AC于点F且DE=DF,EF与AD交于点O,求证AD⊥EF
如图,已知点D为等边△ABC中AC边上一点,点E为AB边上一点,且CD=AE.过点E作EF⊥BD于点F,BD与CE交于点
如图,在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为E,EF∥DB交CB的延长线于点F,猜想
如图,在Rt△ABC中,∠ABC=90°,D是斜边AC的中点,DE⊥AB,垂足为E,EF∥DB交CB的延长线于点F,猜想
如图,在△ABC中,∠C=90°,点D是AB边上的一点,MD⊥AB,且MD=AC,过点M作ME//BC交AB于点E.求证
如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.