作业帮 > 综合 > 作业

如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且C

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/19 19:46:22
如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且CD=ED.
(1)求证:AC=
2
如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且C
(1)证明:
连接CM,
∵△ACB是等腰直角三角形,M为AB中点,
∴AM=CM=BM,CM⊥AB,
∵EF⊥AB,CD⊥DE,
∴∠CMD=∠DFE=∠CDE=90°,
∴∠CDM+∠EDF=90°,∠CDM+∠DCM=90°,
∴∠DCM=∠EDF,
在△DCM和△EDF中

∠CMD=∠DFE
∠DCM=∠EDF
CD=DE
∴△DCM≌△EDF(AAS),
∴DF=CM,
∵△ACB中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∵∠CMA=90°,AM=CM,由勾股定理得:AC=
2CM,
∴AC=
2DF.

(2)
证明:过E作EF⊥AB交BA延长线于F,
∵由(1)知:△DCM≌△EDF,
∴EF=DM,DF=CM,CM=AM,
∴DF=AM,
∴DF-AD=AM-AD,
∴AF=DM,
∴AF=EF,
∵∠F=90°,
∴∠FAE=∠FEA=45°,
∵∠B=45°,
∴∠FAE=∠B,
∴AE∥BC.

(3)BC-AE=
6,
理由是:过E作EN∥AB交BC于N,交CM于Q,如图3,
∵AE∥BC,
∴四边形AENB是平行四边形,
∴AE=BN,
∴BC-AE=CN,
∵EF⊥AB,CM⊥AB,
∴CM∥EF,∠QMF=90°,
∵EQ∥AB,
∴四边形FEQM是矩形,
∴∠EQM=∠CQM=90°,EF=QM,
∵DM=EF,
∴QM=DM,
∵AM=CM,
∴AD=CQ=
3,
∵∠ACB=90°,AC=BC,M为AB中点,
∴∠MCB=45°,
∴∠QNC=45°=∠QCN,
∴CQ=QN=