已知函数f(x)=asinwx+bcoswx(a,b,w为正常数)最小正周期为π/2,当x=π/3时,f(x)取最小值-
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:48:14
已知函数f(x)=asinwx+bcoswx(a,b,w为正常数)最小正周期为π/2,当x=π/3时,f(x)取最小值-4
1.求a,b的值.
2.若函数f(x)在区间[π/4,m]上存在零点,求m的最小值
1.求a,b的值.
2.若函数f(x)在区间[π/4,m]上存在零点,求m的最小值
f(x)=asinwx+bcoswx
= √a²+b² sin (wx+φ)
最小正周期为π/2, 2π/ w = π/2,即w=4
当x=π/3时,f(x)取最小值-4,即加减1/4个周期(π/8)与x轴相交,即在5π/24处或 11π/24
即 asin(4π/3)+bcos(4π/3)=4
asin5π/6+bcos5π/6=0
解得 a=2√3 b=2
因为当x= 5π/24处或 11π/24,y=0
若函数f(x)在区间[π/4,m]上存在零点
故m最小值是11π/24
= √a²+b² sin (wx+φ)
最小正周期为π/2, 2π/ w = π/2,即w=4
当x=π/3时,f(x)取最小值-4,即加减1/4个周期(π/8)与x轴相交,即在5π/24处或 11π/24
即 asin(4π/3)+bcos(4π/3)=4
asin5π/6+bcos5π/6=0
解得 a=2√3 b=2
因为当x= 5π/24处或 11π/24,y=0
若函数f(x)在区间[π/4,m]上存在零点
故m最小值是11π/24
已知函数f(x)=asinwx+bcoswx(其中abw为实数,w>0)的最小正周期为2,并当x=1/3时,f(x)ma
已知函数f(x)=Asinwx+Bcoswx(其中A,B,w是实常数,w>0)的最小正周期是2,并且当x=1/3时,f(
f(X)=AsinwX+BcoswX (A、B、w是是实常数,w>0)的最小正周期为2,并且当X=1/3时,f(X)最大
已知定义在R上的函数f(x)=asinWx+bcosWx,(W>0)的最小正周期为∏,且f(x)
已知定义在R上的函数f(x)=asinwx+bcoswx (w>0)的最小正周期为π,且对一切x∈R,都有f(x)≤f(
已知定义在R上的函数f(x)=asinwx+bcoswx(w>o,a>0,b>0)的周期为∏,f(x)
已知函数f(X)=asinwx+coswx(a>0,w>0)的最大值为根号2,最小周期为2π.求函数f(X)的解析式.
已知a,b,w是实数,函数f(x)=asinwx+bcoswx满足“图像关于图像关于点(π/3,0)对称 且在x=π/6
已知:定义在R上的函数f(x)=asinwx+bcoswx(w<0)的周期为π,且对一切x∈R,都有f(x)≤f(π/1
已知定义在R上的函数,f(x)=asinwx加bcoswx(w大于0)的周期为派,且f(x)小于等于f(12分之派)=4
已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<π/2)的最小正周期为2,且当x=1/3时,f(x)取得
函数f(x)=2sin(wx+a),x∈R,其中w>0,-π<a≤π,若函数最小正周期为6π,且当x=π/2,f(x)取