作业帮 > 数学 > 作业

已知函数f(x)=asinwx+bcoswx(a,b,w为正常数)最小正周期为π/2,当x=π/3时,f(x)取最小值-

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:48:14
已知函数f(x)=asinwx+bcoswx(a,b,w为正常数)最小正周期为π/2,当x=π/3时,f(x)取最小值-4
1.求a,b的值.
2.若函数f(x)在区间[π/4,m]上存在零点,求m的最小值
已知函数f(x)=asinwx+bcoswx(a,b,w为正常数)最小正周期为π/2,当x=π/3时,f(x)取最小值-
f(x)=asinwx+bcoswx
= √a²+b² sin (wx+φ)
最小正周期为π/2, 2π/ w = π/2,即w=4
当x=π/3时,f(x)取最小值-4,即加减1/4个周期(π/8)与x轴相交,即在5π/24处或 11π/24
即 asin(4π/3)+bcos(4π/3)=4
asin5π/6+bcos5π/6=0
解得 a=2√3 b=2
因为当x= 5π/24处或 11π/24,y=0
若函数f(x)在区间[π/4,m]上存在零点
故m最小值是11π/24