作业帮 > 数学 > 作业

已知{an}是正数组成的数列 a1=1 且点(根号an ,a(n+1))(n∈N*)在函数y=x^2+1的图像上

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:56:50
已知{an}是正数组成的数列 a1=1 且点(根号an ,a(n+1))(n∈N*)在函数y=x^2+1的图像上
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1=1,b(n+1)=bn+2^an,求bn﹡b(n+2)﹤b^2(n+1)
已知{an}是正数组成的数列 a1=1 且点(根号an ,a(n+1))(n∈N*)在函数y=x^2+1的图像上
1、
把(√an,a(n+1))代入y=x²+1,得
a(n+1)=an + 1
即数列{an}是以1为首项,1为公差的等差数列.
∴an = n
2、
∵b(n+1)=bn+2^an
∴b(n+1) - bn = 2^an = 2^n
∴有:
bn - b(n-1) = 2^(n-1)
b(n-1) - b(n-2) = 2^(n-2)
b(n-2) - b(n-3) = 2^(n-3)
·
·
·
b3 - b2 = 2²
b2 - b1 = 2
全加,得
bn - a1 = 2 + 2² + 2³ + …… + 2^(n-1) = 2^n - 2
∴bn = 2^n - 1
bn·b(n+2)
=(2^n - 1)[2^(n+2) - 1]
=2^(2n+2) - 2^n - 2^(n+2) + 1
=2^(2n+2) - 2^(n+2) + 1 - 2^n
=[2^(n+1)]² - 2×2^(n+1) + 1 -2^n
=[2^(n+1) - 1]² - 2^n
≤[2^(n+1) - 1]²
=b²(n+1)