已知{an}是正数组成的数列,a1=1,且点(根号an,a(n+1))(n∈N*)在函数y=x^2+1的图像上
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 22:46:08
已知{an}是正数组成的数列,a1=1,且点(根号an,a(n+1))(n∈N*)在函数y=x^2+1的图像上
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1=1,b(n+1)=bn+2^an,求证bn*b(n+2)<b(n+1)的平方
有个答案是An+1=A(n+1),所以AN是工差为1的数列,由A1,得AN=N,
那你qq是···
(1)求数列{an}的通项公式
(2)若数列{bn}满足b1=1,b(n+1)=bn+2^an,求证bn*b(n+2)<b(n+1)的平方
有个答案是An+1=A(n+1),所以AN是工差为1的数列,由A1,得AN=N,
那你qq是···
a(n+1)=a(n)+1;
a(1)=1;
故a(n)=n.
这个不解释了.
若b(n)=b(n+1)+2^a(n)=b(n+1)+2^n,
这是一个离散时不变因果系统,故可以等式两边进行Z变换,解出b(n):
注意单边衰减的公式:Z[x(n+1)u(n)]=zX(Z)-zx(0).
故:ZB(Z)=B(Z)+Z/(Z-2)+zb(0),此因果系统,b(0)=0.
故B(Z)=(Z)/[(Z-2)(Z-1)].
B(Z)/Z=1/[(Z-2)(Z-1)]=[1/(Z-2)]-[1/(Z-1)].
用部分分式展开法求的:b(n)=Z^(-1)[B(Z)]
=(2^n)-(1^n)
=2^n-1
用z变换解还是很方便的.
另:希望楼下不要打酱油.
靠...我发现修改回复后我居然成了楼下...哎...
a(1)=1;
故a(n)=n.
这个不解释了.
若b(n)=b(n+1)+2^a(n)=b(n+1)+2^n,
这是一个离散时不变因果系统,故可以等式两边进行Z变换,解出b(n):
注意单边衰减的公式:Z[x(n+1)u(n)]=zX(Z)-zx(0).
故:ZB(Z)=B(Z)+Z/(Z-2)+zb(0),此因果系统,b(0)=0.
故B(Z)=(Z)/[(Z-2)(Z-1)].
B(Z)/Z=1/[(Z-2)(Z-1)]=[1/(Z-2)]-[1/(Z-1)].
用部分分式展开法求的:b(n)=Z^(-1)[B(Z)]
=(2^n)-(1^n)
=2^n-1
用z变换解还是很方便的.
另:希望楼下不要打酱油.
靠...我发现修改回复后我居然成了楼下...哎...
已知{an}是正数组成的数列 a1=1 且点(根号an ,a(n+1))在函数y=x^2+2的图像上
已知{an}是正数组成的数列,a1=1,且点(根号an,a(n+1))(n∈N*)在函数y=x^2+1的图像上
已知{an}是正数组成的数列 a1=1 且点(根号an ,a(n+1))(n∈N*)在函数y=x^2+1的图像上
己知{an}是正数组成的数列,a1=1,且点(根号an,an+1)(n属于N)在函数y=x^2+1的图像上,那么数列{a
已知{an}是整数组成的数列,a1=1,且点(根号an,an+1)(n∈N*)在函数y=x^2+1的图像上,an的通向公
已知{an}是正数组成的数列,a1=1,且点(根号an,an+1)(n∈N*)在函数y=x^2+1的图象上
已知{an}是正数组成的数列,a1=1且点(根号an,an+1)(n属于N*)在函数y=x^2+1的图象上
已知在数列|an|中,a1=1,且点(an,an+1)(n∈N*)在函数f(x)=x+2的图像上
已知{an}是整数组成的数列,a1=1,且点(更号an,an+1)(n∈N*)在函数y=x平方+1的图像上
已知在数列﹛an﹜中,a1=1,且点(an,a(n+1))(n∈N+)在函数f(x)=x+2的图像上.
已知数列{an}中,a1=1,且点p(an,a(n+1))(n∈N*)在一次函数y=x+1上 (1)求数列{an}的通项
数列{an}中,a1=2,且满足点(an,a(n+1))在函数f(x)=x^2+2x的图像上(n∈N*)