已知f(x)=asinwx+bcoswx(w>0)的最小正周期为π,且当x=π/12时,有最大值4,求a,b,w的值及单
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:11:21
已知f(x)=asinwx+bcoswx(w>0)的最小正周期为π,且当x=π/12时,有最大值4,求a,b,w的值及单调递增区间
答:
f(x)=asinwx+bcoswx
=√(a²+b²) { [a/√(a²+b²)]sinwx+[b/√(a²+b²)]coswx }
=√(a²+b²) sin(wx+β)
上述过程就是辅助角公式的推导过程:cosβ=a/√(a²+b²),sinβ=b/√(a²+b²)
最小正周期T=2π/w=π,w=2
x=π/12时有最大值4,则:
f(π/12)=√(a²+b²) sin(2*π/12+β)=4
所以:
√(a²+b²)=4
sin(π/6+β)=1
所以:
a²+b²=16
π/6+β=π/2
β=π/3
cosβ=a/√(a²+b²)=cosπ/3=1/2
所以:a=2,b=2√3
所以:f(x)=4sin(2x+π/3)
单调增区间满足:2kπ-π/2
f(x)=asinwx+bcoswx
=√(a²+b²) { [a/√(a²+b²)]sinwx+[b/√(a²+b²)]coswx }
=√(a²+b²) sin(wx+β)
上述过程就是辅助角公式的推导过程:cosβ=a/√(a²+b²),sinβ=b/√(a²+b²)
最小正周期T=2π/w=π,w=2
x=π/12时有最大值4,则:
f(π/12)=√(a²+b²) sin(2*π/12+β)=4
所以:
√(a²+b²)=4
sin(π/6+β)=1
所以:
a²+b²=16
π/6+β=π/2
β=π/3
cosβ=a/√(a²+b²)=cosπ/3=1/2
所以:a=2,b=2√3
所以:f(x)=4sin(2x+π/3)
单调增区间满足:2kπ-π/2
f(X)=AsinwX+BcoswX (A、B、w是是实常数,w>0)的最小正周期为2,并且当X=1/3时,f(X)最大
已知定义在R上的函数f(x)=asinwx+bcoswx (w>0)的最小正周期为π,且对一切x∈R,都有f(x)≤f(
已知定义在R上的函数f(x)=asinWx+bcosWx,(W>0)的最小正周期为∏,且f(x)
已知函数f(x)=Asinwx+Bcoswx(其中A,B,w是实常数,w>0)的最小正周期是2,并且当x=1/3时,f(
已知函数f(x)=asinwx+bcoswx(其中abw为实数,w>0)的最小正周期为2,并当x=1/3时,f(x)ma
已知函数f(X)=asinwx+coswx(a>0,w>0)的最大值为根号2,最小周期为2π.求函数f(X)的解析式.
已知定义在R上的函数f(x)=asinwx+bcoswx(w>o,a>0,b>0)的周期为∏,f(x)
已知:定义在R上的函数f(x)=asinwx+bcoswx(w<0)的周期为π,且对一切x∈R,都有f(x)≤f(π/1
已知定义在R上的函数,f(x)=asinwx加bcoswx(w大于0)的周期为派,且f(x)小于等于f(12分之派)=4
已知a,b,w是实数,函数f(x)=asinwx+bcoswx满足“图像关于图像关于点(π/3,0)对称 且在x=π/6
已知函数f(x)=Asin(wx+π/4)(其中x属于R,A>0,w>0)的最大值为2,最小正周期为8...
已知函数f(x)=Asin(wx+4/π)(其中x属于R,A>0w>0)的最大值为2最小正周期为8