设A为椭圆x^2/a^2+y^2/b^2=1上的一动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,恰好有|A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 08:31:12
设A为椭圆x^2/a^2+y^2/b^2=1上的一动点,弦AB,AC分别过焦点F1,F2,当AC垂直于x轴时,恰好有|AF1|:|AF2|=3:1 ,(1)求椭圆离心率(这一问跳过)
(2)设AF1=mF1B,AF2=nF2C,证明m+n为定值6
(字母均为向量)
(2)设AF1=mF1B,AF2=nF2C,证明m+n为定值6
(字母均为向量)
1、e=√2/2;
2、作出此椭圆的左准线,过点A、B分别作左准线的垂线,垂足分别为D、E,过点B作AD的垂线,垂足是H,且与x轴交于点M.设AF1=3t,则AF2=t,F1F2=2c=2√2t,也就是c=√2t.
①n=1,这个简单的;
②下面证明m=5:
有了上面的铺垫,可以解决这个问题了,为了方便起见,设BF1=x.利用比例线段,得:BF1:BA=MF1:AH,其中BF1=x,BA=x+3t,MF1=c-BE=c-x/e=c-√2x=√2t-√2x,AH=AD-DH=(AF1)/e-BE=3√2t-√2x,代入,计算下,得:x=(3/5)t,这样就得出了m=5.证毕.
2、作出此椭圆的左准线,过点A、B分别作左准线的垂线,垂足分别为D、E,过点B作AD的垂线,垂足是H,且与x轴交于点M.设AF1=3t,则AF2=t,F1F2=2c=2√2t,也就是c=√2t.
①n=1,这个简单的;
②下面证明m=5:
有了上面的铺垫,可以解决这个问题了,为了方便起见,设BF1=x.利用比例线段,得:BF1:BA=MF1:AH,其中BF1=x,BA=x+3t,MF1=c-BE=c-x/e=c-√2x=√2t-√2x,AH=AD-DH=(AF1)/e-BE=3√2t-√2x,代入,计算下,得:x=(3/5)t,这样就得出了m=5.证毕.
设A为椭圆x^2/a^2+y^2/b^2=1上的一动点弦AB,AC分别过焦点F1,F2当AC垂直于x轴时,恰好有
如图,已知A为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一个动点,弦AB、AC分别过焦点F1、F2,当AC
如图,已知A为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一个动点,弦AB、AC分别过焦点F1、F2,
设椭圆x^2/a^2+y^2/b^2的左,右焦点分别为f1.f2.上顶点为a,过点a与f2垂直的直线交x轴负半轴,于点q
已知A B C均在椭圆M:x^2/a^2+y^2=1(a>0)上 直线AB AC分别过椭圆的左右焦点F1 F2 当向量A
已知A,B,C均在椭圆M:x^2/a^2+y^2=1(a>1)上,直线AB,AC分别过椭圆的左右焦点F1,F2当,
设F1 F2分别为椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的左右两个焦点,过F2作垂直于长轴的直线交于
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1的左右焦点,过F2的直线与椭圆C相交于AB两点
椭圆方程为x^2/a^2+y^2/b^2=1 (大于大于)的两个焦点分别为F1,F2,点P在椭圆C上,且PF1垂直于F1
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,过F2的直线l与椭圆C相交于A,B
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F2的直线L与椭圆C相交于A、
设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线交于A,B两