一道数学题,附图,抛物线解析式为y=0.25x*2-0.25(b+1)x+b/4,该抛物线和x正半轴交于A,B,和y轴交
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 05:09:51
一道数学题,附图,
抛物线解析式为y=0.25x*2-0.25(b+1)x+b/4,该抛物线和x正半轴交于A,B,和y轴交于C.
(1).点B坐标为__________.点C坐标为___________.
(2)请探究第一象限内是否有点P,使得四边形PCOB的面积为2b,且△PBC是以P为直角顶点的等腰直角三角形? 求出点P坐标
(3).第一象限内是否存在点Q,使△QCO,△QOA,△QAB中的任意两个三角形均相似?
请求出Q点的坐标
抛物线解析式为y=0.25x*2-0.25(b+1)x+b/4,该抛物线和x正半轴交于A,B,和y轴交于C.
(1).点B坐标为__________.点C坐标为___________.
(2)请探究第一象限内是否有点P,使得四边形PCOB的面积为2b,且△PBC是以P为直角顶点的等腰直角三角形? 求出点P坐标
(3).第一象限内是否存在点Q,使△QCO,△QOA,△QAB中的任意两个三角形均相似?
请求出Q点的坐标
(1)令y=0,即y=y=0.25x^2-0.25(b+1)x+0.25b
解得:x=1或b,
∵b是实数且b>2,点A位于点B的左侧,
∴点B的坐标为(b,0),
令x=0,
解得:y=0.25b
∴点C的坐标为(0,0.25b)
故答案为:(b,0),(0,0.25b)
(2)存在,
假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.
设点P的坐标为(x,y),连接OP.
则S四边形PCOB=S△PCO+S△POB=(1/2)*(0.25b)•x+(1/2)•b•y=2b,
∴x+4y=16.
过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,
∴∠PEO=∠EOD=∠ODP=90°.
∴四边形PEOD是矩形.
∴∠EPD=90°.
∴∠EPC=∠DPB.
∴△PEC≌△PDB,∴PE=PD,即x=y.
由
x=y
x+4y=16
解得x=16/5 ,y=16/5
由△PEC≌△PDB得EC=DB,即16/5 - b/4=b -16/5
解得b=128/25 >2符合题意.
∴P的坐标为(16/5,16/5)
(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
∵∠QAB=∠AOQ+∠AQO,
∴∠QAB>∠AOQ,∠QAB>∠AQO.
∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.
∵b>2,
∴AB>OA,
∴∠Q0A>∠ABQ.
∴只能∠AOQ=∠AQB.此时∠OQB=90°,
由QA⊥x轴知QA∥y轴.
∴∠COQ=∠OQA.
∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.
(I)当∠OCQ=90°时,△CQO≌△QOA.
∴AQ=CO=0.25b
由AQ^2=OA•AB得:(0.25b)^2=b-1.
解得:b=8±4根号3
∵b>2,
∴b=8+4根号3
∴点Q的坐标是(1,2+根号3).
(II)当∠OQC=90°时,△OCQ∽△QOA,
∴OQ/CO=AQ/QO
即OQ^2=OC•AQ.
又OQ2=OA•OB,
∴OC•AQ=OA•OB.即
0.25b •AQ=1×b.
解得:AQ=4,此时b=17>2符合题意,
∴点Q的坐标是(1,4).
∴综上可知,存在点Q(1,2+根号3)或Q(1,4),
使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
解答完毕,如果不懂欢迎追问!
再问: 你牛,等等啊,我看看对不对啊 问下啊,你是自己写的,还是查的答案
解得:x=1或b,
∵b是实数且b>2,点A位于点B的左侧,
∴点B的坐标为(b,0),
令x=0,
解得:y=0.25b
∴点C的坐标为(0,0.25b)
故答案为:(b,0),(0,0.25b)
(2)存在,
假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.
设点P的坐标为(x,y),连接OP.
则S四边形PCOB=S△PCO+S△POB=(1/2)*(0.25b)•x+(1/2)•b•y=2b,
∴x+4y=16.
过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,
∴∠PEO=∠EOD=∠ODP=90°.
∴四边形PEOD是矩形.
∴∠EPD=90°.
∴∠EPC=∠DPB.
∴△PEC≌△PDB,∴PE=PD,即x=y.
由
x=y
x+4y=16
解得x=16/5 ,y=16/5
由△PEC≌△PDB得EC=DB,即16/5 - b/4=b -16/5
解得b=128/25 >2符合题意.
∴P的坐标为(16/5,16/5)
(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
∵∠QAB=∠AOQ+∠AQO,
∴∠QAB>∠AOQ,∠QAB>∠AQO.
∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.
∵b>2,
∴AB>OA,
∴∠Q0A>∠ABQ.
∴只能∠AOQ=∠AQB.此时∠OQB=90°,
由QA⊥x轴知QA∥y轴.
∴∠COQ=∠OQA.
∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.
(I)当∠OCQ=90°时,△CQO≌△QOA.
∴AQ=CO=0.25b
由AQ^2=OA•AB得:(0.25b)^2=b-1.
解得:b=8±4根号3
∵b>2,
∴b=8+4根号3
∴点Q的坐标是(1,2+根号3).
(II)当∠OQC=90°时,△OCQ∽△QOA,
∴OQ/CO=AQ/QO
即OQ^2=OC•AQ.
又OQ2=OA•OB,
∴OC•AQ=OA•OB.即
0.25b •AQ=1×b.
解得:AQ=4,此时b=17>2符合题意,
∴点Q的坐标是(1,4).
∴综上可知,存在点Q(1,2+根号3)或Q(1,4),
使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
解答完毕,如果不懂欢迎追问!
再问: 你牛,等等啊,我看看对不对啊 问下啊,你是自己写的,还是查的答案
抛物线y=ax2+bx+3与x轴交于点a(1,0)和点b(-3,o),与y轴交于点c(1)求抛物线的解析式(2)设抛物线
如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线
已知抛物线Y=a力的平方+bx+c与x轴交于A(-5,0),B(-1,0),顶点C到X轴的距离为2,求抛物线的解析式和函
中考的一道数学题已知抛物线Y=X2-2x+c与X轴交于A,B两点,与Y轴交于C点,抛物线的顶点为D点,点A的坐标为(-1
一道数学题,抛物线y=x^2+bx+c(b≠0)的图像与x轴交于A,B两点,与y轴交于点
一道函数题如图,抛物线y= -(x+1)(x-3)交x轴于A,B,点D为抛物线顶点,圆A与y轴相切.现将该圆沿抛物线从点
已知直线y=-2x+b(b≠0)与x轴交于点A,与y轴交于点B;一抛物线的解析式为y=x2-(b+10)x+c.
二次函数,初四.已知抛物线与x轴交于A(-2,0) B(4,0),和y轴交于C(0,8).(1)求抛物线的解析式和它的顶
抛物线y=ax^2+2ax+b与直线y=x+1交于A,C两点,与y轴交于B,AB‖x轴,且S△ABC=3,求抛物线解析式
如图,抛物线C1:y=x²-4x+b与x轴交于A、B,直线y=1/2x-3分别交x轴、y轴于D点和C点,
求二次函数的解析式抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.
抛物线y=x平方-2x+m与x轴交于A、B两点,与y轴交于C(0,-3)(1)求抛物线的解析(2)若在第四象限的抛物线上