过圆(x-1)²+(y-1)²=1外一点P(2,3),向圆引两条切线为A,B,求经过两切点的直线L的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 08:48:12
过圆(x-1)²+(y-1)²=1外一点P(2,3),向圆引两条切线为A,B,求经过两切点的直线L的方程
设A(x1,y1),B(x2,y2),
因为 A、B 在圆上,所以过 A、B 的圆的切线方程分别为
(x1-1)(x-1)+(y1-1)(y-1)=1 、(x2-1)(x-1)(y2-1)(y-1)=1 ,
由于这两条切线都过点 P ,
因此代入可得 (x1-1)*(2-1)+(y1-1)*(3-1)=1 、(x2-1)*(2-1)+(y2-1)*(3-1)=1 ,
也就是 (x1-1)+2(y1-1)=1 、(x2-1)+2(y2-1)=1 ,
这说明,A 、B 的坐标都满足方程 (x-1)+2(y-1)=1 ,
上式表示直线,且过 A、B ,
所以直线 AB 的方程为 (x-1)+2(y-1)=1 ,化简得 x+2y-4=0 .
因为 A、B 在圆上,所以过 A、B 的圆的切线方程分别为
(x1-1)(x-1)+(y1-1)(y-1)=1 、(x2-1)(x-1)(y2-1)(y-1)=1 ,
由于这两条切线都过点 P ,
因此代入可得 (x1-1)*(2-1)+(y1-1)*(3-1)=1 、(x2-1)*(2-1)+(y2-1)*(3-1)=1 ,
也就是 (x1-1)+2(y1-1)=1 、(x2-1)+2(y2-1)=1 ,
这说明,A 、B 的坐标都满足方程 (x-1)+2(y-1)=1 ,
上式表示直线,且过 A、B ,
所以直线 AB 的方程为 (x-1)+2(y-1)=1 ,化简得 x+2y-4=0 .
过椭圆x29+y24=1上一点H作圆x2+y2=2的两条切线,点A,B为切点,过A,B的直线l与x轴,y轴分布交于点P,
已知P(2,4)是圆x²+y²=1外一点,PA,PB是过P点的圆的切线,切点为A,B(1)求直线AB
已知圆O:x2+y2=1,点P在直线L:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点
已知p(2,3)为圆C:(x-1)^2+y^2=1外一点,向该圆引切线PA,PB,切点为A,B,求直线AB的方程
已知圆c:x^2+y^2=r^2和圆外一点P(x0,y0),过P作圆的两条切线,切点为A,B,求过A,B两点的直线方程
已知圆C:x的平方+(y-1)的平方=1和直线l:y=-1由圆C外一点P(a,b)向圆C引一条切线PQ,切点为Q,并且满
1·过圆外一点P(a,b)作圆x2+y2=r2的两条切线,切点为AB,求直线AB的方程
已知圆x2+y2=1,点P在直线l:2x+y-3=0上,过点P作圆O的两条切线,A.B为两切点.点M为直线y=x与直线L
过圆x²+y²=r²外一点M(x0,y0)向圆引切线,设切点为A,B,求证:直线AB的方程
过x轴上一点P,向圆C:x²+(y-2)²=1作切线,切点分别A,B,则△ABC面积的最大值为多少?
过点p(-2,-3)作圆C:(x-4)^2+(y-2)^2=9的两条切线,切点分别为A`B,求经过圆心C,切点为A.B这
过点P(3,4)作圆x方+y方=1的两条切线切点分别为A,B,求线段AB的长