将下列对坐标的曲线积分化为对弧长的曲线积分:∫x^2ydx-xdy,L(下标)为曲线y=x^3上从A(-1,-1)到B(
计算积分∫x²dy-ydx,其中L是沿曲线y²=x从点A(1,-1)到点B(1,1)的弧段
把对坐标的曲线积分∫ L P(x,y)dx+Q(x,y)dy化成对弧长的曲线积分,其中L为沿上半圆周x 2 +y 2=2
L∫xydx,其中L为y^2=x上,从A(1,-1)到B(1.1)的一般弧,计算第二类曲线积分
[计算下列对弧长的曲线积分] ∫|y|ds,其中L(下标)为右半个单位圆
[这是有关对坐标的曲线积分的题] 设L(下标)为xoy面内直线x=a上的一段,证明:∫P(x,y)dx=0
一道简单的曲线积分计算对坐标曲线积分∫(6xy^2-y^3)dx+(6x^2y-3xy^2)dy为从点A(0,0)经曲线
第一型曲线积分的问题:1.计算∫下标L|y| ds,其中L为右半单位圆周:x^2+y^2=1,x>=0
对坐标的曲线积分曲线在点(X,Y)处的线密度为p=|Y|,求曲线X=acost,Y=bsint(0<t<2兀,0<b<a
计算对坐标的曲线积分∫(x^2-2xy)dx+(y^2-2xy)dy,其中C为抛物线y=x^2上对应于x=-1到x=1的
如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号
求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,
(1+y)ds对x^2+y^2=a^2的有向曲线积分