(1)函数fx,x属于R,若对于任意实数a,b都有f(a+b)=f(a)+f(b).求证:f(x)为奇函数.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 21:13:51
(1)函数fx,x属于R,若对于任意实数a,b都有f(a+b)=f(a)+f(b).求证:f(x)为奇函数.
(2)函数fx,x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2).求证:fx为偶函数.
(2)函数fx,x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2).求证:fx为偶函数.
(1)令a=b=0,则f(0+0)=f(0)+f(0),即f(0)=0;
再令a=-b,则有f(0)=f(a)+f(-a),即f(-a)=-f(a);
根据奇函数的定义得证.
(2)方法大同小异,首先令x1=x2=0,其次令x1=0(或是x2=0),x2(或是x1)保持不变就好了.
解决此类抽象函数问题,注意题中“任意”二字,相当重要,同时希望深刻理解奇偶函数的概念.
再令a=-b,则有f(0)=f(a)+f(-a),即f(-a)=-f(a);
根据奇函数的定义得证.
(2)方法大同小异,首先令x1=x2=0,其次令x1=0(或是x2=0),x2(或是x1)保持不变就好了.
解决此类抽象函数问题,注意题中“任意”二字,相当重要,同时希望深刻理解奇偶函数的概念.
证明:函数f(x),x属于R,若对于任意实数a,b,都有f(a+b)=f(a)+f(b),求证f(x)为奇函数
函数f(x),x属于R,若对于任意实数a,b都有f(a+b)=f(a)+(b)求证f(x)为奇函数
已知函数f(x),x属于R,若对任意实数a,b都有f(a+b)=f(a)+f(b).求证f(x)为奇函数.
函数f(x),x属于R,若对于任意实数a,b,都有f(a+b)+f(a-b)=2f(a)*f(b),求证f(x)为偶函数
函数f(x)x∈r,若对于任意实数a,b都有f(a+b)=f(a)+f(b)求证f(x) 为奇函数
奇偶性 已知函数f(x) x属于R 若对任意实数a b 都有f(a+b)=f(a)+f(b) 求证f(x)为奇函数
已知函数y=f(x)(x∈R),若对于任意实数a,b都有f(a+b)=f(a)+f(b),求证f(x)是奇函数
函数f(x)对于任意的a.b属于R都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1,求证f(x)是
设函数f(x)的定义域为R,且对于任意实数a,b,都有f(a+b)+f(ab)=2f(a)f(b),求证:f(x)为偶
定义在R上的函数f(X),对任意实数a,b,都有f(a+b)=f(a)+f(b) 1.求证f(x)是奇函数
对于函数y=f(x)的定义域为R 则y=f(x)为奇函数的充要条件为 A=f(0) B=对任意X属于R fx=0都成立
已知函数f(x)定义域为R ,对任意实数a,b 都有f(a+b)=f(a)-f(b) 求f(x) 奇偶性