给定函数f(x)=x+ax+b,若对于任意x,y∈R,均有pf(x)+qf(y)≥f(px+qy),其中p+q=1,则p
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:28:37
给定函数f(x)=x+ax+b,若对于任意x,y∈R,均有pf(x)+qf(y)≥f(px+qy),其中p+q=1,则p的取值范围是?
(注意随时使用条件:0≤p≤1,p+q=1) 我们恒有:(x-y)≥0 所以:x+y≥2xy ==> pqx+pqy≥2pqxy ==> p(1-p)x+(1-q)qy≥2pqxy ==> px+qy≥px+2pqxy+qy ==> (px+qy)+(pax+qay)+(pb+qb)≥(px+qy)+(pax+qay)+b ==> p(x+ax+b)+q(y+ay+b)≥(px+qy)+a(px+qy)+b ==> pf(x)+qf(y)≥f(px+qy) 证毕.
已知函数f(x)=x^2+ax+b,当p,q满足p+q=1时,试证明:pf(x)+qf(y)≥f(px+qy)对于任意实
已知f(x)=x的平方+ax+b,且p+q=1,求证pf(x)+f(px+qy)对任意实数x.y都成立的充要条件是0≤p
(1)设f(x)的图像为一条开口向上的抛物线,已知x、y均为正数,p>0,q>0,p+q=1.比较f(px+qy)与pf
设函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)
设f(x)=2x²+1,pq>0,p+q=1,求证对任意实数ab恒有pf(a)+qf(b)≧f(pa+qb)
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立
设函数发(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)
证明:若任意x,y∈R,有f(x+y)=f(x)+f(y),且f(x)在0连续,则函数f(x)在R连续,且f(x)=ax
已知函数f(x)对于任意xy属于r都有f(x+y)=f(X)+F(Y),且f(2)=4 则f(-1)
若函数y=f(x)是定义域为R的奇函数,且对于任意x∈R,有f(x+3)=-f(x),若f(1)=1,tanα=2,则f
已知a>0,命题p:任意x∈(0,+∞),有不等式x+a/x≥2恒成立,命题q:x∈R,函数f(x)=(a-1)^y是实
已知函数f(x)(x∈R且x>0),对于定义域内任意x、y恒有f(xy)=f(x)+f(y),并且x>1时,f(x)>0