如图,圆O是Rt三角形中以直角边AB为直径的圆,圆O与斜边AC交与D,过D作DH垂直AB于H
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 02:26:29
如图,圆O是Rt三角形中以直角边AB为直径的圆,圆O与斜边AC交与D,过D作DH垂直AB于H
,又过D做直线DE交BC于点E,使∠HDE=2∠A.求证:(1)DE是圆O的切线(2)OE是Rt三角形ABC的中位线.
,又过D做直线DE交BC于点E,使∠HDE=2∠A.求证:(1)DE是圆O的切线(2)OE是Rt三角形ABC的中位线.
(1)连接OD,
则∠HOD=2∠A,
已知∠HDE=2∠A,
则∠HOD=∠HDE,
∵HD⊥AB,
∴∠HOD+∠HDO=90°,
∴∠HDE+∠HDO=90°,
即OD⊥DE,
又OD是半径,
∴DE是⊙O的切线;
(2)∵DE是⊙O的切线,∠ABC=90°,
∴∠OBE=∠ODE=90°,
又OB=OD,OE=OE,
∴Rt△BOE≌Rt△DOE,
∴∠BOE=∠DOE,
∴∠HOD=∠BOE+∠DOE=2∠BOE,
又∠HOD=2∠A,
∴∠BOE=∠A,
∴OE∥AD,
而O是AB的中点,
故OE是△ABC的中位线.
则∠HOD=2∠A,
已知∠HDE=2∠A,
则∠HOD=∠HDE,
∵HD⊥AB,
∴∠HOD+∠HDO=90°,
∴∠HDE+∠HDO=90°,
即OD⊥DE,
又OD是半径,
∴DE是⊙O的切线;
(2)∵DE是⊙O的切线,∠ABC=90°,
∴∠OBE=∠ODE=90°,
又OB=OD,OE=OE,
∴Rt△BOE≌Rt△DOE,
∴∠BOE=∠DOE,
∴∠HOD=∠BOE+∠DOE=2∠BOE,
又∠HOD=2∠A,
∴∠BOE=∠A,
∴OE∥AD,
而O是AB的中点,
故OE是△ABC的中位线.
已知,以Rt三角形ABC的直角边BC为直径作圆O,以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D
以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,E为BC上中点,连接DE
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
如图,以Rt三角形ABC的直角边AC为直径做圆O交斜边AB于点E,半径OD垂直于AC,DE交AC于点H,过点E做一直线交
如图,已知三角形ABC中,AB=AC,以AB为直径作圆O,交BC于D,交AC于F,过D作DE垂直AC于E ,已知DE与圆
如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于点D,过点D作⊙O的切
1.如图1,以Rt三角形ABC的直角边AB为直径的圆O与斜边AC交与点D,点E是BC的中点.求证:DE是圆O的切线
1、如图,已知三角形ABC中,AB=AC,以AB为直径做圆O交BC与D,过D做DE垂直AC于E,求证:DE是圆O的切线.
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E
如图,在Rt三角形ABC中,角BAC=90度,以AB为直径作圆O交BC于E,D为AC的中点,EF垂直AB于AB点F,过A
如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆
如图,在三角形ABC中,AB=AC,以AB为直径的圆O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为E