若二次函数f(x)=4x²-2(p-2)x-2p²-p+1在区间[-1,1]上至少存在一点c使f(c
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 03:37:00
若二次函数f(x)=4x²-2(p-2)x-2p²-p+1在区间[-1,1]上至少存在一点c使f(c)>0,求p
原题目等价于“求出能够使f(x)在[-1,1]上存在正值的p的范围”,可以通过求“使f(x)在[-1,1]上不存在正值的p的范围”,然后将求出的p的取值范围在实数范围R上取补集,即可获得题目要求的p
无疑,要使f(x)在[-1,1]上不存在任何一个正值,只需要满足f(x)≤0,x∈[-1,1],这个要求等价于使f(x)在[-1,1]上的最大值小于等于0!
由于抛物线开口向上,其在[-1,1]上的最大值只能在端点-1或1上取得(顶点处一定取最小值,故不作考虑),由于无法判断究竟是在x=-1还是x=1处取得最大值,只需使f(-1)≤0且f(1)≤0即可
通过f(x)的解析式可求出:
f(-1)=-2p^+p+1,f(1)=-2p^-3p+9
从而得出两个不等式:
-2p^+p+1≤0
-2p^-3p+9≤0
解出分别为p≥1或者p≤-1/2,p≥3/2或者p≤-3
取并集得到p≥3/2或者p≤-3
即:p在上述的取值范围内,满足使f(x)在[-1,1]内不存在正值
对p的取值集合取补集,为(-3,3/2),此集合即为能够使f(x)在[-1,1]上至少存在一点c使f(c)>0的p的范围
无疑,要使f(x)在[-1,1]上不存在任何一个正值,只需要满足f(x)≤0,x∈[-1,1],这个要求等价于使f(x)在[-1,1]上的最大值小于等于0!
由于抛物线开口向上,其在[-1,1]上的最大值只能在端点-1或1上取得(顶点处一定取最小值,故不作考虑),由于无法判断究竟是在x=-1还是x=1处取得最大值,只需使f(-1)≤0且f(1)≤0即可
通过f(x)的解析式可求出:
f(-1)=-2p^+p+1,f(1)=-2p^-3p+9
从而得出两个不等式:
-2p^+p+1≤0
-2p^-3p+9≤0
解出分别为p≥1或者p≤-1/2,p≥3/2或者p≤-3
取并集得到p≥3/2或者p≤-3
即:p在上述的取值范围内,满足使f(x)在[-1,1]内不存在正值
对p的取值集合取补集,为(-3,3/2),此集合即为能够使f(x)在[-1,1]上至少存在一点c使f(c)>0的p的范围
若二次函数f(x)=4x²-2(p-2)x-2p²-p+1在区间[-1,1]上至少存在一点c使f(c
已知函数f(x)=4x²-2(p-2)x-2p²-p+1在区间【-1,1】上至少有一个实数c,使f(
若二次函数f(x)=4x^-2(p-2)x-2p^-p+1在区间【-1,1】内至少存在一点C(c,0),使f(c)>0,
若二次函数f(x)=4x^2-2(p-2)-2p^2-p+1在区间【-1,1】内至少存在一点c,使f(c)>0,求实数p
在二次函数f(X)=4X^2-2(P-2)X-2P^2-P+1在区间[-1,1]内至少存在一点C(c,0),使f(c)
已知函数f(x)= 4X*X-2(p-2)X-2p*p-p+1 在区间【-1,1】上至少存在一个实数c ,使 f(c)>
若二次函数f(x)=4x的平方-2(p-2)x-2p的平方-p+1在区间[1,-1]内至少存在一点c,使得f(c)...
已知二次函数f(x)=x^2-3x+p-1,若在区间[0,1]内至少存在一个实数c,使f(c)>0,则实数p的取值范围是
已知函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]上至少存在一个实数c,使f(c)〉0,求p
已知二次函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0.
已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实
已知二次函数f(x)=4x^4-2(p-2)x-2p^2-p+1在区间[-1,1]内至少存在一个实数c,使f(x)>0,