作业帮 > 数学 > 作业

有两个函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),已知它们的周期和为3π/2,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 15:09:24
有两个函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),已知它们的周期和为3π/2,
且f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,求a、b、k的值
有两个函数f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),已知它们的周期和为3π/2,
f(x)=asin(kx+π/3),g(x)=btan(kx-π/3)(k>0),
已知它们的周期和为2π/k+π/k=3π/2,
∴k=2.
又f(π/2)=g(π/2),f(π/4)=-√3g(π/4)+1,
∴-a(√3)/2=-b√3,a/2=-√3*b(1-√3)/(1+√3)+1,
化简得a=2b,b=b(2√3-3)+1,
解得b=(2+√3)/2,a=2+√3.