作业帮 > 综合 > 作业

已知函数f(x)=ln(x+a)-x2+x,g(x)=x•ex-x2-1(x>0),且f(x)点x=1处取得极值.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/16 18:16:39
已知函数f(x)=ln(x+a)-x2+x,g(x)=x•ex-x2-1(x>0),且f(x)点x=1处取得极值.
(Ⅰ)求实数a的值;
(Ⅱ)若关于x的方程f(x)=-
5
2
已知函数f(x)=ln(x+a)-x2+x,g(x)=x•ex-x2-1(x>0),且f(x)点x=1处取得极值.
(Ⅰ)∵f(x)=ln(x+a)-x2+x,
∴f′(x)=
1
x+a−2x+1
∵函数f(x)=ln(x+a)-x2+x在点x=1处取得极值,
∴f'(1)=0,即当x=1时
1
x+a−2x+1=0,

1
1+a−1=0,则得a=0.经检验符合题意;                     
(Ⅱ)∵f(x)=−
5
2x+b,∴lnx−x2+x=−
5
2x+b,
∴lnx−x2+
7
2x=b.
令h(x)=lnx−x2+
7
2x(x>0),
则h′(x)=
1
x−2x+
7
2=−
(4x+1)(x−2)
2x.
∴当x∈[1,3]时,h'(x),h(x)随x的变化情况表:

x1(1,2)2(2,3)…(8分)
3
h'(x)+0-
h(x)↗极大值↘计算得:h(1)=
5
2,h(3)=ln3+
3
2>
5
2,h(2)=ln2+3,
∴h(x)∈[
5
2,ln2+3]
所以b的取值范围为[
5
2,ln2+3].                        
(Ⅲ)证明:令F(x)=g(x)-f(x)=x•ex-lnx-x-1(x>0),
则F′(x)=(x+1)•ex−
1
x−1=
(x+1)
x•(x•ex−1),
令G(x)=x•ex-1,则∵G'(x)=(x+1)•ex>0(x>0),
∴函数G(x)在(0,+∞)递增,G(x)在(0,+∞)上的零点最多一个,
又∵G(0)=-1<0,G(1)=e-1>0,
∴存在唯一的c∈(0,1)使得G(c)=0,
且当x∈(0,c)时,G(x)<0;当x∈(c,+∞)时,G(x)>0.
即当x∈(0,c)时,F'(x)<0;当x∈(c,+∞)时,F'(x)>0.
∴F(x)在(0,c)递减,在(c,+∞)递增,
从而F(x)≥F(c)=c•ec-lnc-c-1.
由G(c)=0得c•ec-1=0即c•ec=1,两边取对数得:lnc+c=0,
∴F(c)=0,∴F(x)≥F(c)=0,
从而证得g(x)≥f(x).