数列(函数通项的求解)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 16:04:01
var SWOC = {}; SWOC.tip = false; try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?qid=317568")}catch(o){if(!oldalert){var oldalert=true;var sys={};var ua=navigator.userAgent.toLowerCase();var s;(s=ua.match(/msie ([\d.]+)/))?sys.ie=s[1]:0;if(!sys.ie){alert("因浏览器兼容问题,导致您无法看到问题与答案。请使用IE浏览器。")}else{SWOC.tip = true;/*if(window.showModalDialog)window.showModalDialog("include\/addsw.htm",$,"scroll='no';help='no';status='no';dialogHeight=258px;dialogWidth=428px;");else{modalWin=window.open("include\/addsw.htm","height=258px,width=428px,toolbar=no,directories=no,status=no,menubar=no,scrollbars=no,resizable=no ,modal=yes")}*/}}}
解题思路: 理解常见的求法
解题过程:
解: fn+1(x)=f1[fn(x)],
fn+1(x)=2/(1+fn(x))
fn+1(x)+2=(4+2fn(x))/(1+fn(x))
fn+1(x)-1=(1-fn(x))/(1+fn(x))
[fn+1(x)+2]/[fn+1(x)-1]=(4+2fn(x))/(1-fn(x))=-2*[fn(x)+2]/[fn(x)-1]
故[fn(0)+2]/[fn(0)-1]是以 (f1(0)+2)/(f1(0)-1)=4为首项,-2为公比的等比数列
故:(fn(0)+2)/(f(0)-1)=4*(-2)^(n-1)
an=1/4*(-1/2)^(n-1)
最终答案:略
解题过程:
解: fn+1(x)=f1[fn(x)],
fn+1(x)=2/(1+fn(x))
fn+1(x)+2=(4+2fn(x))/(1+fn(x))
fn+1(x)-1=(1-fn(x))/(1+fn(x))
[fn+1(x)+2]/[fn+1(x)-1]=(4+2fn(x))/(1-fn(x))=-2*[fn(x)+2]/[fn(x)-1]
故[fn(0)+2]/[fn(0)-1]是以 (f1(0)+2)/(f1(0)-1)=4为首项,-2为公比的等比数列
故:(fn(0)+2)/(f(0)-1)=4*(-2)^(n-1)
an=1/4*(-1/2)^(n-1)
最终答案:略