数学归纳法的题..用数学归纳法证明,1+1/2+1/3+…+1/(2^n-1)1,n为正整数)时,由n=k(k>1)不等
用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1
用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3•…•(2n-1)(n∈N)时,从“k”到“k+1”的证明
用数学归纳法证明“(n+1)(n+2).(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘
用数学归纳法证明(n+1)+(n+2)+…+(n+n)=n(3n+1)2的第二步中,n=k+1时等式左边与n=k时的等式
用数学归纳法证明等式(n+1)(n+2)…(n+n)=2的n次方×1×3×5×…(2n-1)的过程中,由增加到k+1时,
利用数学归纳法证明不等式1+12+13+…+12n-1<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,
用数学归纳法证明不等式1n+1+1n+2+…+1n+n>1324的过程中,由n=k推导n=k+1时,不等式的左边增加的式
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+
用数学归纳法证明:n∈N*,(n+1)(n+2)…(n+n)=2n•1•3•(2n-1),从k到k+1时左边需增代数式等
关于数学归纳法数学归纳法是这样的:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)
用数学归纳法证明“1+12+13+…+12n−1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+
数学归纳法证明 < {(n+1)/2 }的n 次方