已知函数f(x)=(4x)/(3x^2+3),x属于[0,2].设a不等于0,函数g(x)=(1/3)ax^3 - (a
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:11:01
已知函数f(x)=(4x)/(3x^2+3),x属于[0,2].设a不等于0,函数g(x)=(1/3)ax^3 - (a^2)x,x属于[0,2].若对任意X1属于[0,2],总存在x2属于[0,2],使得f(x1)-g(x2)=0,求实数a的取值范围.
由题意可知,“对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)-g(x2)=0”成立的充要条件为“函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间”.
当a<0时,g'(x)= ax^2-a^2<0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]为减函数,且g(0)=0,所以,此种情况不成立.
当a>0时,令g'(x)= ax^2-a^2=0,得x^2=a,x=√a.由于g(0)=0,又函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间,所以,g(x)在区间[0,2]上必为增函数,即必有√a≥2,得a≥4,且g(2)=8a/3-2a^2≤2/3.解得a≤1/3或a≥1.
综合知a≥4即为所求.
再问: 错了,充要条件是[o,2/3]属于g(x)吧~ 但还是谢谢。
当a<0时,g'(x)= ax^2-a^2<0,函数g(x)=1/3 ax^3-a^2x,x∈[0,2]为减函数,且g(0)=0,所以,此种情况不成立.
当a>0时,令g'(x)= ax^2-a^2=0,得x^2=a,x=√a.由于g(0)=0,又函数g(x)=1/3 ax^3-a^2x(x∈[0,2])的值域为[0,2/3]的子区间,所以,g(x)在区间[0,2]上必为增函数,即必有√a≥2,得a≥4,且g(2)=8a/3-2a^2≤2/3.解得a≤1/3或a≥1.
综合知a≥4即为所求.
再问: 错了,充要条件是[o,2/3]属于g(x)吧~ 但还是谢谢。
已知函数f(x)=(4x)/(3x^2+3),x属于[0,2].设a不等于0,函数g(x)=(1/3)ax^3 - (a
已知函数f(x)=1/3a^2x^3-ax^2+2/3,g(x)=-ax+1,x属于R,a不等于0
已知函数f(x)=3/2ax^2 ,g(x)=-6x+lnx^3(a不等于0)
设函数f(x)=-x^3+ax^2+(a^2)*x+1(x属于R),其中a属于R,当a不等于0时,求函数f(x)的极大值
已知函数f(x)的定义域为x属于【-1/2,3/2】,求g(x)=f(ax)+F(x/a)(a>0)的定义域
设函数f(x)=ln(x+1)+ax,(a属于实数a不等于0)
已知a>0,函数f(x)=1/3a^2x^3-ax^2+2/3,g(x)=-ax+1,x属于R
已知函数f(x)=4x^2+1/x,(x≠0) 设函数g(x)=ax^3+1/x,(a>0),若对于任意的x∈(0,2]
已知函数f(x)=ax+1/x^2(x不等于0),若函数f(x)在x属于[3,正无穷)上为增函数,求a的取值范围
已知函数g(x)=ax²-2ax+1+b(a不等于0,b>1),在区间[2,3]上有最大值4,最小值1,设f(
已知函数f(x)=ax^2+2bx(a不等于0),g(x)=2Inx,设F(x)=f(x)-g(x),且F(x)在x=1
设a属于R,函数f(x)=ax^3-3x^2 若函数g(x)=f(x)+f'(x),x属于[0,2],在x=0处取得最大