1.已知f(x)=x^2+px+q和g(x)=x+4/x在区间A=[1,5/2]上对任意x属于A存在常数x0属于A使得f
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:52:10
1.已知f(x)=x^2+px+q和g(x)=x+4/x在区间A=[1,5/2]上对任意x属于A存在常数x0属于A使得f(x)大于等于f(x0),g(x)大于等于g(x0),且f(x0)=g(x0).则f(x)在A上的最大值为( )A.5/2 B.17/4 C.5 D.41/40
2.设函数y=f(x)是定义在R上的奇函数,且当x>=0时,f(x)=x^2,若对于任意的x属于[t,t+2],不等式f(x+t)>=2f(x)恒成立.则实数t的取值范围是( )
2.设函数y=f(x)是定义在R上的奇函数,且当x>=0时,f(x)=x^2,若对于任意的x属于[t,t+2],不等式f(x+t)>=2f(x)恒成立.则实数t的取值范围是( )
1.g(x)=x+4/x≥2,当且仅当x=2时等号成立,故g(x)=x+4/x在区间A=[1,5/2]上的最小值为4,此时x=2,根据题意,知x0=2,f(x0)=g(x0)=4.所以
f(x)=(x-2)^2+4 x∈[1,5/2]
当x=1时,f(x)在A上的值最大,最大值=5
选C
2.
1)若t
f(x)=(x-2)^2+4 x∈[1,5/2]
当x=1时,f(x)在A上的值最大,最大值=5
选C
2.
1)若t
关于连续函数已知f(x)在R上连续,且f(x+y)=f(x)+f(y)对于任意x、y属于R成立.求证存在常数a,使得f(
设函数f(x)=x^3,g(x)=-x^2+x-2/9a,若存在x0∈[-1,a/3](a>0)使得f(x0)
设[a,b]是一个有限闭区间,如果对任意x0属于[a,b],f(x)在x=x0处的极限都存在,证明:f(x)在闭区间[a
已知a为实数,函数f(x)=a/x+Lnx-1,g(x)=(Lnx-1)e^x+x.问:是否存在实数x0属于(0,e],
命题p:任意x属于[1,2],x^2-a>=0 命题q:存在x属于R,使得x^2+(a-1)x+1
已知函数f(x)=(x^2+2x+a),x属于[1,+无穷大] 若对任意x属于[1,+无穷大],f(x)>0恒成立,试求
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数
设f(x)=2x^2/x+1,g(x)=ax+5-2a(a>0).①求f(x)在x属于【0,1】上的值域.②若对任意X1
已知函数f(x)=x-1/x,g(x)=1/x-x-m,若对任意x1属于【1,3】,存在x2属于【-2,-1】,使得f(
若存在常数P使得函数f(x)满足f(px)=f(px-p/2)(x属于R),则f(x)的一个正周期为?
已知命题p:对任意x属于[ 1,2] ,x^ 2-a大于等于0.命题q:存在X0 属于R,使得X0^2+(a-1)X0+
已知函数f(x)=a/2+1/2X次方 +1,x属于R,是否存在实数a,使得f(x)是奇函数或者偶函数