作业帮 > 数学 > 作业

△ABC为等边三角形,圆O为△ABC外接圆,P是弧BC上任意一点,PA交BC于D,求证PA平方=AC平方+PB*PC

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:58:39
△ABC为等边三角形,圆O为△ABC外接圆,P是弧BC上任意一点,PA交BC于D,求证PA平方=AC平方+PB*PC
△ABC为等边三角形,圆O为△ABC外接圆,P是弧BC上任意一点,PA交BC于D,求证PA平方=AC平方+PB*PC
【简单一道相似题,楼上用什么xx定理?】
证明:
∵⊿ABC为等边三角形
∴AB=AC
∴∠ACB=∠APC【同圆内等弧所对的圆周角相等】
又∵∠CAP=∠DAC【公共角】
∴⊿ACD∽⊿APC(AA‘)
∴PA/AC=AC/AD
∴PA×AD=AC²
∵∠APB=∠APC【同圆内等弧(AB=AC)所对的圆周角相等】
∠BAP=∠BCP【同弧所对的圆周角相等】
∴⊿BAP∽⊿DCP(AA’)
∴PA/PC=PB/PD
∴PA×PD=PB×PC
∴PA×AD+PA×PD=AC²+PB×PC
∵PA=AD+PD
∴PA²=AC²+PB×PC