△ABC为等边三角形,圆O为△ABC外接圆,P是弧BC上任意一点,PA交BC于D,求证PA平方=AC平方+PB*PC
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:58:39
△ABC为等边三角形,圆O为△ABC外接圆,P是弧BC上任意一点,PA交BC于D,求证PA平方=AC平方+PB*PC
【简单一道相似题,楼上用什么xx定理?】
证明:
∵⊿ABC为等边三角形
∴AB=AC
∴∠ACB=∠APC【同圆内等弧所对的圆周角相等】
又∵∠CAP=∠DAC【公共角】
∴⊿ACD∽⊿APC(AA‘)
∴PA/AC=AC/AD
∴PA×AD=AC²
∵∠APB=∠APC【同圆内等弧(AB=AC)所对的圆周角相等】
∠BAP=∠BCP【同弧所对的圆周角相等】
∴⊿BAP∽⊿DCP(AA’)
∴PA/PC=PB/PD
∴PA×PD=PB×PC
∴PA×AD+PA×PD=AC²+PB×PC
∵PA=AD+PD
∴PA²=AC²+PB×PC
证明:
∵⊿ABC为等边三角形
∴AB=AC
∴∠ACB=∠APC【同圆内等弧所对的圆周角相等】
又∵∠CAP=∠DAC【公共角】
∴⊿ACD∽⊿APC(AA‘)
∴PA/AC=AC/AD
∴PA×AD=AC²
∵∠APB=∠APC【同圆内等弧(AB=AC)所对的圆周角相等】
∠BAP=∠BCP【同弧所对的圆周角相等】
∴⊿BAP∽⊿DCP(AA’)
∴PA/PC=PB/PD
∴PA×PD=PB×PC
∴PA×AD+PA×PD=AC²+PB×PC
∵PA=AD+PD
∴PA²=AC²+PB×PC
如图,P是等边△ABC外接圆BC上任意一点,求证:PA=PB+PC.
P为△ABC内任意一点,求证:PA+PB+PC>1/2(AB+BC+AC)
P为锐角△ABC内任意一点,求证:PA+PB+PC<AB+AC+BC
正三角形ABC内接与圆O,P是劣弧BC上任意一点,PA与BC交于点E,求证(1)PA=PB+PC (2)PA×PE=PB
如图,已知点A、B、C、D为圆O上的三个点,且△ABC为等边三角形,P为弧BC上一点.求证:PA=PB+PC
已知△ABC是等边三角形,⊙O为它的外接圆,点P在弧AB上,PA交BC于点E 求1,PE/PB=EC/AC
设P是正三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA,PB*PC=PA^2-PB^2
如图2等边三角形ABC的三个顶点都在⊙O上点P是弧BC上任意一点求证PB+PC=PA
如图,已知三角形ABC是等边三角形,圆O为它的内接圆,点P是弧BC上任一点,求证PB+PC=PA
如图,P是等边三角形abc外接圆弧bc上任意一点,求证:pa=pb+pc
“在三角形ABC中,AB=AC=m,P为BC上任意一点,则PA的平方+PB乘以PC的值为多少?
如图,圆O是等边三角形ABC的外接圆,P是BC上一点,连接PB、PC,问:PA、PB、PC之间有和数量关系?为什么?