设a、b属于R,a^2+2b^2=6,则a+b的最小值是____
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:17:36
设a、b属于R,a^2+2b^2=6,则a+b的最小值是____
解法1:判别式法.
设a+b=t,则a=t-b.[1]
代入条件得:(t-b)^2+2b^2=6,
3b^2-2tb+(t^2-6)=0.[2]
∵b是实数,∴判别式Δ≥0,
即4t^2-12(t^2-6)≥0,
化简得:t^2≤9,
∴-3≤t≤3.
当t=-3时,由[2]得b=-1,代入[1]得a=-2.
所以a+b的最小值是-3(当a=-2,b=-1时取到).
解法2:三角换元法
a^2+2b^2=6→(a^2)/6+(b^2)/3=1,
设a=(根6)cosx,b=(根3)sinx,这里x∈R.
a+b=(根3)sinx+(根6)cosx
=根号下[(根3)^2+(根6)^2]sin(x+θ).[1]
=3sin(x+θ),(其中θ是辅助角)
而sin(x+θ)的最小值是-1,
所以a+b的最小值是-3.
说明:[1]式用到公式:asinx+bcosx=根号(a^2+b^2)*sin(x+θ),
其中“辅助角θ”满足条件“tanθ=b/a”,而辅助角θ的象限位置由点(a,b)的象限位置决定.
设a+b=t,则a=t-b.[1]
代入条件得:(t-b)^2+2b^2=6,
3b^2-2tb+(t^2-6)=0.[2]
∵b是实数,∴判别式Δ≥0,
即4t^2-12(t^2-6)≥0,
化简得:t^2≤9,
∴-3≤t≤3.
当t=-3时,由[2]得b=-1,代入[1]得a=-2.
所以a+b的最小值是-3(当a=-2,b=-1时取到).
解法2:三角换元法
a^2+2b^2=6→(a^2)/6+(b^2)/3=1,
设a=(根6)cosx,b=(根3)sinx,这里x∈R.
a+b=(根3)sinx+(根6)cosx
=根号下[(根3)^2+(根6)^2]sin(x+θ).[1]
=3sin(x+θ),(其中θ是辅助角)
而sin(x+θ)的最小值是-1,
所以a+b的最小值是-3.
说明:[1]式用到公式:asinx+bcosx=根号(a^2+b^2)*sin(x+θ),
其中“辅助角θ”满足条件“tanθ=b/a”,而辅助角θ的象限位置由点(a,b)的象限位置决定.
设a,b属于r,a^2+2b^2=6,则a+b最小值
a,b属于R a方+2b方=6求a+b最小值
设a,b∈R,a2+2b2=6,则a+b的最小值是______.
设a,b∈R,a2+2b2=6,则a+b的最小值是( )
设a,b∈R,且a+b=3,那2^a+2^b+1的最小值是
设a,b属于R,且a+b=1,则ab+1/ab的最小值是
设a,b属于R+,且a+b=1,则ab+ 1/ab的最小值是( )
急求 数学高一题 不等式 设a b属于R* 若a^2+b^2=a+b 则a+b的最大值是
设集合A={XIX=a^+2a+4.a属于R},B={yIy=b^-4b+3,b属于R},则A集合B与之间的关系是 ,附
已知a,b属于R+,且ab(a+b)=16,求a^2+b^2的最小值.
设a,b∈R,且a+b=3,求 2^a+2^b的最小值
设a,b属于R+,求证a^2+b^2>=ab+a+b-1