如图,已知椭圆C:x∧2/a∧2+y∧2/b∧2的离心率为√3/2,左焦点F(-c,0)到直线x/c+y/b=1的距离d
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:32:57
如图,已知椭圆C:x∧2/a∧2+y∧2/b∧2的离心率为√3/2,左焦点F(-c,0)到直线x/c+y/b=1的距离d=√3,设圆T:(x+2)∧2+y∧2=r∧2与椭圆C交与点M,N,求向量TM·向量TN的最小值,并求此时圆T的方程
c=1; 点(-1,√2/2)在椭圆上,有1/a^2+1/2b^2=1.1#
又 a^2-c^2=b^2 带入1# 得出 a^2=2或者a^2=1/2(舍去,因为椭圆里a>c)
标准方程:x^2/2+y^2 = 1
椭圆方程为 x^2 + 2y^2 = 2
设直线l 为 my+1 = x (斜率k=1/m,其实就是 y=k(x-1))代入椭圆方程
得到 (my+1)^2+2y^2-2 = 0 即 (m^2+2)y^2+2my-1=0.1#
设Q坐标(x3,0) A(x1,y1),B(x2,y2)向量QAQB=-7/16等价于 x1x2-x3(x1+x2)+x3^2+y1y2 =-7/16(2#)恒成立
y1y2 = -1/(m^2+2); x1+x2 = 2+m(y1+y2) = 2-2m^2/(m^2+2)=4/ (m^2+2)
x1x2 = m(y1+y2)+1+y1y2m^2 = (-2m^2+m^2+2-m^2)/(m^2+2)=6/(m^2+2)-2
带入2# 令N=m^2+2
6/N-x3*4/N+x3^2-1/N=25/16
(1/N)(5-4x3) = 25/16-x3^2 恒成立
1@ 当x3 = 5/4时,左边=0,右边也=0,恒成立!检验当直线平行于X轴时,也成立(想想为什么不是平行于Y轴)
2@ 当x3≠ 5/4 时候,1/N = 5/4-x3 右边为常数但左边是变量,不成立
所以存在定点Q(5/4,0)使得命题恒成立
又 a^2-c^2=b^2 带入1# 得出 a^2=2或者a^2=1/2(舍去,因为椭圆里a>c)
标准方程:x^2/2+y^2 = 1
椭圆方程为 x^2 + 2y^2 = 2
设直线l 为 my+1 = x (斜率k=1/m,其实就是 y=k(x-1))代入椭圆方程
得到 (my+1)^2+2y^2-2 = 0 即 (m^2+2)y^2+2my-1=0.1#
设Q坐标(x3,0) A(x1,y1),B(x2,y2)向量QAQB=-7/16等价于 x1x2-x3(x1+x2)+x3^2+y1y2 =-7/16(2#)恒成立
y1y2 = -1/(m^2+2); x1+x2 = 2+m(y1+y2) = 2-2m^2/(m^2+2)=4/ (m^2+2)
x1x2 = m(y1+y2)+1+y1y2m^2 = (-2m^2+m^2+2-m^2)/(m^2+2)=6/(m^2+2)-2
带入2# 令N=m^2+2
6/N-x3*4/N+x3^2-1/N=25/16
(1/N)(5-4x3) = 25/16-x3^2 恒成立
1@ 当x3 = 5/4时,左边=0,右边也=0,恒成立!检验当直线平行于X轴时,也成立(想想为什么不是平行于Y轴)
2@ 当x3≠ 5/4 时候,1/N = 5/4-x3 右边为常数但左边是变量,不成立
所以存在定点Q(5/4,0)使得命题恒成立
已知椭圆C:x.x/a.a+y.y/b.b=1的左焦点F及点A(0,b),原点O到直线FA的距离为√2/2b 求椭圆C的
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,右焦点到直线x/a+b/y=1的距离d=√
已知椭圆X^2/a^2+y^2/b^2=1(a>b>C)的离心率是根号6/3,F是其左焦点,若直线x-根号6y=0与椭圆
如图,椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,其左焦点到P(2,1)的距离为根号10,
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,右焦点到直线l1;3x+4y=0的距离为3
已知椭圆C:x^2/a^2+y^2/b^2=1,(a>b>0)的离心率为√6/3,椭圆C上任何一点到椭圆的两个焦点的距离
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,右焦点到直线x/a+y/b=1的距离d=√
已知椭圆 C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F及点A(0,b),原点O到直线FA的距离为2分之
设椭圆C:x^2/a^+ y^2/b^2=1(a>b>0) 的离心率e=1/2,右焦点到直线x/a+ y/b=1的距离d
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,F为左焦点,A、B、C分别为椭圆的左上下顶点,
如图,椭圆C:(a>b>0)的离心率为x^2/a^2+y^2/b^2=1,其左焦点到点P(2,1)的距离为.不过原点O的
已知椭圆C:x^2/a^2 + y^2/b^2 =1 (a>b>0)的离心率为√3/3,过右焦点F的直线l与C相交于AB