无向图g有7个顶点 若不存在由奇数条边构成的简单回路 则它至多有 条边
无向图G有七个顶点,若不存在由奇数条边构成的简单回路,则它至少有几条边
若G是一个具有36条边的非连通无向图(没有自回路和多重边),则G至少有____个顶点?
设无向连通图G有n个顶点,证明G至少有(n-1)条边.
连通无向图G有k个奇顶点,如果把G变成无奇顶点的图,则在G中至少需要 加___ ___条边
设一个无向图G=(V,E)有n个顶点n+1条边,证明G中至少有一个顶点的度数大于或等于3.
对于一个非连通无向图,共有28条边,则该图至少有多少个顶点?
数据结构题.假定无向图G有6个结点和9条边,.(1) 画出G的邻接距阵和邻接表(2) 根据邻接表从顶点3
G是一个具有n个结点的无向连通图,证明G至少有n-1条边,并证明具有n-1条边的无向连通图是一棵树
判断有向图的回路长度和条数
设一个包含N个顶点、E条边的简单有向图采用邻接矩阵存储结构(矩阵元素A[i][j]等于1/0分别表示顶点i与顶点j之间有
设汁一个算法,建立无向图(n个顶点,e条边)的邻接表
1.证明在具有n个顶点的简单无向图G中,至少有两个顶点的度数相同.