已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,并求出f(x)的极大值.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:45:37
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,并求出f(x)的极大值.
由已知,可得f(1)=1-3a+2b=-1①,
又f'(x)=3x2-6ax+2b,
∴f'(1)=3-6a+2b=0,②
由①,②,解得a=
1
3,b=−
1
2.
故函数的解析式为f(x)=x3-x2-x.
由此得f'(x)=3x2-2x-1,根据二次函数的性质,当x<−
1
3或x>1时,f'(x)>0;
当−
1
3<x<1,f'(x)<0.
∴函数f(x) 在(−∞,−
1
3)和(1,+∞)上单调递增,在(−
1
3,1)单调递减
∴当x=−
1
3时,f(x)取得极大值,f(x)极大值=
5
27
又f'(x)=3x2-6ax+2b,
∴f'(1)=3-6a+2b=0,②
由①,②,解得a=
1
3,b=−
1
2.
故函数的解析式为f(x)=x3-x2-x.
由此得f'(x)=3x2-2x-1,根据二次函数的性质,当x<−
1
3或x>1时,f'(x)>0;
当−
1
3<x<1,f'(x)<0.
∴函数f(x) 在(−∞,−
1
3)和(1,+∞)上单调递增,在(−
1
3,1)单调递减
∴当x=−
1
3时,f(x)取得极大值,f(x)极大值=
5
27
已知函数f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a,b的值,并求出f(x)的极大值.
已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.
(2001•江西)设f(x)=x3-3ax2+2bx在x=1处有极小值-1,试求a、b的值,并求出f(x)的单调区间.
函数f(x)=x3+3ax2+3(a+2)x+1有极大值又有极小值,则a的范围是______.
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
已知函数f(x)=3x^3-3ax^2=2bx在x=1处有极小值-1,试确定a.b的值,并求出f(x)的单调区间.
已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( )
已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取得极小值,当x=23时取得极大值.
已知函数f(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a的取值范围是______
在R上可导的函数f(x)=13x3+12ax2+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,
已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值.
已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是( )