作业帮 > 数学 > 作业

已知向量a=(2,cosx),b=(sin(x+π/6),2),函数f(x)=a*b

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 03:14:34
已知向量a=(2,cosx),b=(sin(x+π/6),2),函数f(x)=a*b
(1)求其单调增区间(2)若f(x)=6/5求cos(2x-π/3)的值
已知向量a=(2,cosx),b=(sin(x+π/6),2),函数f(x)=a*b
(1) f(x)=a*b=2sin(x+π/6)+2cosx=√3sinx+3cosx
化成同名函数 f(x)= 2√3sin(x+π/6) (提取系数平方和)
则2kπ-π/2≤x+π/6≤2kπ+π/2
解得 f(x)的单调递增区间是[2kπ-2π/3,2kπ+π/3],k∈Z.
(2) f(x)= 2√3sin(x+π/6)=6/5
解得 sin(x+π/6)=√3/5
cos(2x-π/3) = cos(2x+π/6)
[sin(x/2)]^2=(1-cosx)/2
cos(2x-π/3)=16/25