高数 偏导数设z=xy+xF(u),而u=y/x,F(u)为可导函数,证明:x*(z对x的偏导)+y(z对y的偏导)=z
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:02:17
高数 偏导数
设z=xy+xF(u),而u=y/x,F(u)为可导函数,证明:x*(z对x的偏导)+y(z对y的偏导)=z+xy
设z=xy+xF(u),而u=y/x,F(u)为可导函数,证明:x*(z对x的偏导)+y(z对y的偏导)=z+xy
高数 偏导数设z=xy+xF(u),而u=y/x,F(u)为可导函数,证明:x*(z对x的偏导)+y(z对y的偏导)=z
复合函数求导法设z=xy+xF(u),而u=y/x,F(u)可导,证明x*(z对x的偏导)+y*(z对y的偏导)=z+x
函数z=u+v,而u=x+y,v=xy,那么对与z中对x的偏导为多少呢?
设函数u=u(x,y),由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0定义,求u对y的偏导
z=f(u,v)=u^2-v^2,u=x+y,v=xy.求z对x的偏导.
设u=f(x,xy,xyz),f具有二阶连续偏导数,求u先对z求偏导再对y求偏导的二阶偏导数
设z=z(x,y)是由方程f(x-az,y-bz)=0所定义的隐函数,其中f(u,v)可微,求对y和对x的偏导数
设函数u=f(x,y,z)具有连续的一阶偏导数,其中z=z(x,y)由可微函数y=φ(x,t)及t=ψ(x,z)确定,且
设G(x+z*y^(-1),y+z*x^(-1))=0确定了z=f(x,y)证明:x*z对x的偏导数+y*z对y的偏导数
高数 设u=f(x,z)而z(x,y)是由方程z=x+yφ(z)所确定的函数,其中f和φ都有连续偏导,求δu/δx,δu
设f(u,v)为二元可微函数,z=f(x^y,y^x),求x,y的偏导
设方程f(z/x,y/z)=0确定了函数z=z(x,y)且f具有连续偏导数求z对x的偏导和z对y的偏导