已知数列an的前n项和为sn,且a1+2a2+3a3 答对直接高分
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:58:54
已知数列an的前n项和为sn,且a1+2a2+3a3 答对直接高分
(1)∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①
∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2=n(Sn-Sn-1)-Sn+2Sn-1+2=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,
∴Sn-1+2≠0,
∴q=2,
故{Sn+2}是以4为首项,2为公比的等比数列
∴an=S(n-1)+2=4(1+2^n)/(2-1)+2=[2^(n+2)]+6
(2)2q=(p+r)
a(p)-1=[2^(p+2)]+5
a(q)-1=[2^(q+2)]+5
a(r)-1=[2^(r+2)]+5
=>(a(p)-1)(a(r)-1)=2^(p+r+4)+5(2^(p+2)+2^(r+2))+25
[a(q)-1]²=[2^(2q+4)]+10(2^(q+2))+25=2^(p+r+4)+10(2^(q+2))+25
∴(a(p)-1)(a(r)-1)≠[a(q)-1]²
所以,不存在这样的p,q,
∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2=n(Sn-Sn-1)-Sn+2Sn-1+2=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,
∴Sn-1+2≠0,
∴q=2,
故{Sn+2}是以4为首项,2为公比的等比数列
∴an=S(n-1)+2=4(1+2^n)/(2-1)+2=[2^(n+2)]+6
(2)2q=(p+r)
a(p)-1=[2^(p+2)]+5
a(q)-1=[2^(q+2)]+5
a(r)-1=[2^(r+2)]+5
=>(a(p)-1)(a(r)-1)=2^(p+r+4)+5(2^(p+2)+2^(r+2))+25
[a(q)-1]²=[2^(2q+4)]+10(2^(q+2))+25=2^(p+r+4)+10(2^(q+2))+25
∴(a(p)-1)(a(r)-1)≠[a(q)-1]²
所以,不存在这样的p,q,
已知数列an的前n项和为sn,且a1+2a2+3a3 答对直接高分
已知:数列{An}前n项的和为Sn,且A1^3+A2^3+A3^3+.+An^3=Sn^2
已知数列an的前n项和为sn,且sn+an=1/2(n2+5n+2)(2属于n*) 计算a1 a2 a3 a4
已知数列{an}的前n项和为sn,且sn=1/3an-1/3求⑴a1,a2,a3⑵通项an
已知数列{An}的前n项和为Sn,且Sn+An =2n.求a1.a2.a3.a4.
已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列
已知数列{an}的前n项和sn=n^2+2n+3,求和1/a1+a2+1/a2+a3+1/a3+a4+.+1/an+an
设数列an的前n项和为Sn 已知a1+2a2+3a3+……+nan=(n-1)Sn+2n
已知数列an的前n项和为sn,4sn=an^2+2an-3,若a1,a2,a3成等比数列,且n大于等于3时a大于0.(1
已知数列an的前n项和为Sn=n^2+2n,求和:1/(a1*a2)+1/(a2*a3)+...+1/(an*a(n+1