作业帮 > 数学 > 作业

已知数列an的前n项和为sn,且a1+2a2+3a3 答对直接高分

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:58:54
已知数列an的前n项和为sn,且a1+2a2+3a3 答对直接高分

已知数列an的前n项和为sn,且a1+2a2+3a3 答对直接高分
(1)∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①
∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2=n(Sn-Sn-1)-Sn+2Sn-1+2=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,
∴Sn-1+2≠0,
∴q=2,
故{Sn+2}是以4为首项,2为公比的等比数列
∴an=S(n-1)+2=4(1+2^n)/(2-1)+2=[2^(n+2)]+6
(2)2q=(p+r)
a(p)-1=[2^(p+2)]+5
a(q)-1=[2^(q+2)]+5
a(r)-1=[2^(r+2)]+5
=>(a(p)-1)(a(r)-1)=2^(p+r+4)+5(2^(p+2)+2^(r+2))+25
[a(q)-1]²=[2^(2q+4)]+10(2^(q+2))+25=2^(p+r+4)+10(2^(q+2))+25
∴(a(p)-1)(a(r)-1)≠[a(q)-1]²
所以,不存在这样的p,q,