已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 08:55:37
已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通项公式.
∵a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),①
∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2
∴nan=n(Sn-Sn-1)-Sn+2Sn-1+2
∴nan=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,∴Sn-1+2≠0,
∴{Sn+2}是以4为首项,2为公比的等比数列.
∴Sn+2=2n+1,
∴Sn=2n+1-2,
∴n≥2时,an=Sn-Sn-1=2n,
n=1时,a1=S1=2,也满足上式,
∴an=2n.
∴当n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-2)Sn-1+2(n-1).②
①-②得nan=(n-1)Sn-(n-2)Sn-1+2
∴nan=n(Sn-Sn-1)-Sn+2Sn-1+2
∴nan=nan-Sn+2Sn-1+2.
∴-Sn+2Sn-1+2=0,即Sn=2Sn-1+2,
∴Sn+2=2(Sn-1+2).
∵S1+2=4≠0,∴Sn-1+2≠0,
∴{Sn+2}是以4为首项,2为公比的等比数列.
∴Sn+2=2n+1,
∴Sn=2n+1-2,
∴n≥2时,an=Sn-Sn-1=2n,
n=1时,a1=S1=2,也满足上式,
∴an=2n.
已知数列{an}的前n项和为Sn,且a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*),求数列{an}通
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
已知数列{an}的前n项和为Sn,且 a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*).
设数列an的前n项和为Sn 已知a1+2a2+3a3+……+nan=(n-1)Sn+2n
设数列{an}的前n项和为Sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n (n∈N*).
已知数列an满足a1+2a2+3a3+...+nan=n(n+1)*(n+2),则数列an的前n项和Sn=?
已知数列an满足a1+2a2+3a3+……+nan=n(n+1)(n+2),则它的前n项和Sn=?
已知数列(an)的前N项和为SN,且满足sn=2an-n (n属于N+) 求(1)求a1 a2 a3 (2)求AN得通项
设数列{an}的前n项和为Sn,a1+2a2+3a3.+nan=(n-1)Sn+2n,
数列an的前n项和为sn,且a1=2,nan+1=sn+n*(n+1),求数列an通项公式
已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式
已知数列{an}的前n项和为Sn,a2=4,且满足2Sn=n(an+1)(n∈N*).(1)求a1,a3,a4