数列an的前n项和为Sn.且满足a1=1.2Sn=(n+1)an
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:34:37
数列an的前n项和为Sn.且满足a1=1.2Sn=(n+1)an
(1)求an与a(n-1)的关系式.并求an的通项公式
(2)求和Wn=1/(a2^2-1)+1/(a3^2-1)+……+1/(a(n+1)^2-1)
(1)求an与a(n-1)的关系式.并求an的通项公式
(2)求和Wn=1/(a2^2-1)+1/(a3^2-1)+……+1/(a(n+1)^2-1)
2·a(n) = 2[Sn - S(n-1)] = (n+1)an - n·a(n-1)
∴(n-1)an = n·a(n-1) ,∴an/[a(n-1)] = n/(n-1) ,.,a3/a2 = 3/2 ,a2/a1 = 2/1 ,将上述式子相乘:an/a1 = n ,∴an = n·1 = n ,
即:{an}是以1为首项、1为公差的等差数列 .
1/(a2^2-1) = 1/(2^2-1) = 1/2 - (1/6)
1/(a3^2-1) = 1/4 - (1/8)
1/(a4^2-1) = 1/6 - (1/10)
1/(a5^2-1) = 1/8 - (1/12)
.
1/{[a(n)]^2-1} = 1/{2[a(n) - 1]} - 1/{2[a(n) + 1]]}
= 1/{2[a(n) - 1]} - 1/[2a(n+1)]
1/{[a(n+1)]^2-1} = 1/{2[a(n+1) - 1]} - 1/{2[a(n+1) + 1]]}
= 1/[2a(n)] - 1/{2[a(n+1) + 1]]}
∴Wn = (1/2)·[1 + (1/2) - (1/n+1) - (1/n+2)]
= (3/4) - [1/(2n+2)] - [1/(2n+4)]
∴(n-1)an = n·a(n-1) ,∴an/[a(n-1)] = n/(n-1) ,.,a3/a2 = 3/2 ,a2/a1 = 2/1 ,将上述式子相乘:an/a1 = n ,∴an = n·1 = n ,
即:{an}是以1为首项、1为公差的等差数列 .
1/(a2^2-1) = 1/(2^2-1) = 1/2 - (1/6)
1/(a3^2-1) = 1/4 - (1/8)
1/(a4^2-1) = 1/6 - (1/10)
1/(a5^2-1) = 1/8 - (1/12)
.
1/{[a(n)]^2-1} = 1/{2[a(n) - 1]} - 1/{2[a(n) + 1]]}
= 1/{2[a(n) - 1]} - 1/[2a(n+1)]
1/{[a(n+1)]^2-1} = 1/{2[a(n+1) - 1]} - 1/{2[a(n+1) + 1]]}
= 1/[2a(n)] - 1/{2[a(n+1) + 1]]}
∴Wn = (1/2)·[1 + (1/2) - (1/n+1) - (1/n+2)]
= (3/4) - [1/(2n+2)] - [1/(2n+4)]
数列an的前n项和为Sn.且满足a1=1.2Sn=(n+1)an
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列
已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列
已知数列{an}的前n项和为Sn,且满足an+2Sn+Sn-1=0(n≥2),a1+1/2
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
已知数列an满足;a1=1,an+1-an=1,数列bn的前n项和为sn,且sn+bn=2
已知数列an的前n项和为Sn,且满足an+2Sn·S(n-1)=0(n≥2),a1=1.5
已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.
已知数列{an}的前n项和为Sn,且满足a1=1,Sn-Sn-1=2SnSn-1(n≥2).
已知数列{an}的前n项和为Sn,且满足a1=1,2an/(anSn-Sn^2)=1(n大于等于2)
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列