作业帮 > 数学 > 作业

求证:方程3^x=(2-x)/(x+1)在(0,1)内必有一个实数根

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:06:02
求证:方程3^x=(2-x)/(x+1)在(0,1)内必有一个实数根
求证:方程3^x=(2-x)/(x+1)在(0,1)内必有一个实数根
记f(x)=3^x-(2-x)(x+1)
则f(0)=1-2*1=-10
显然f(x)在[0,1]上连续
根据闭区间上连续函数的零点存在定理一定存在一个A属于(0,1)满足f(A)=0
就是3^A-(2-A)(A+1)=0
这就说明方程3^x=(2-x)/(x+1)在(0,1)内必有一个实数根