容斥原理应用问题讲原理.例:编号1,2,3,4的四个小球放入编号为1,2,3,4的四个小盒里,小盒编号不与小球编号相同,
容斥原理应用问题讲原理.例:编号1,2,3,4的四个小球放入编号为1,2,3,4的四个小盒里,小盒编号不与小球编号相同,
一个人随机地将编号1,2,3,4四个小球放入编号为1,2,3,4的四个盒子,球编号与盒子编号相同时,叫做放对了
一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号
四个编号1,2,3,4的小球放入编号为1,2,3,4的四个盒子里
四个相同的小球放入四个编号为1,2,3,4的盒子中,设X是有球盒子最小的编号,求X的数学期望
排列组合题,把编号为1、2、3、4 的四个小球放入编号为1、2、3、4的四个盒子里 回答下列问题
随即的将编号1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中、每个盒子放一个小球,全部放完.求编号为奇数的小
一个人随机的将编号为1,2,3,4四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与
将编号为1,2,3,4 的小球放入编号1,2,3,4的五个盒子中 .球的编号与盒子的编号不同.有几种放法?
四个不同的小球放入编号为1,2,3,4的盒子中.
将编号1,2,3,4的四个小球分别放入编号为1,2,3,4的四个盒子中,试计算2号球恰被放入
1、将编号为1、2、3的三个小球,放入编号为1、2、3、4的四个盒子里,如果每个盒