作业帮 > 数学 > 作业

函数关于x=a对称 条件为f(a+x)=f(a-x),由偶函数的平移可不可以证明其成立.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 02:06:08
函数关于x=a对称 条件为f(a+x)=f(a-x),由偶函数的平移可不可以证明其成立.
由f(x)=f(-x)
f(x)右移a个单位,有f(x-a)=f(-x+a),f(x)也是关于x=a对称,和前面的条件不吻合,怎么回事?
一楼的杨,你的意思是不是说f(x)向左或者是右平移是括号里面的东西当作整体加减平移的量啊?为什么会是这样呢?
函数关于x=a对称 条件为f(a+x)=f(a-x),由偶函数的平移可不可以证明其成立.
呃.这个应该是你理错误
f(x)右移a个单位时,应该是f(x)中的[x]均减去a 既[x]-a
所以得到的式子应该是 f[-(a+x)]=f[-(a-x)]式
该式和f(a+x)=f(a-x) 是一样的
楼主多看几遍书,认真体会下.
呵呵这是我回答的第2个问题!