作业帮 > 综合 > 作业

已知二次函数f(x)=ax^2-2x+a+b的定义域为[0,3],而值域为[1,5]求a,b的值

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 12:24:54
已知二次函数f(x)=ax^2-2x+a+b的定义域为[0,3],而值域为[1,5]求a,b的值
要详细解答,快
已知二次函数f(x)=ax^2-2x+a+b的定义域为[0,3],而值域为[1,5]求a,b的值
f(x)在定义域内有三种情况:
(1)f(x)在【0,3】内单调递增.
则 f(0) = 1;f(3) = 5;解得 a = 10/9;b = -1/9.
此时函数f(x)的对称轴为 x = 9/10;显然f(x)在【0,3】内不是单调递增.
与假设矛盾,故舍去.
(2)f(x)在【0,3】内单调递减.
则 f(0) = 5;f(3) = 1;解得 a = 2/9;b = 43/9.
此时函数f(x)的对称轴为 x = 9/2;显然f(x)在【0,3】内是单调递减.
与假设相符
(3)f(x)在【0,3】内不是单调函数,即 f(x)对称轴 x = 1/a 在【0,3】之间
则 0 < 1/a < 3;a > 1/3.
此时f(x)在【0,1/a】单调递减,在【1/a,3】单调递增.
f(1/a) = 1,f(0) = 5;或者 f(1/a) = 1,f(3) = 5;
1)若 f(1/a) = 1,f(0) = 5;
解得 a = 1/4,b = 19/4;与假设 a > 1/3 相矛盾,故舍去.
2)若 f(1/a) = 1,f(3) = 5;
解得 a = 1/3,b = 23/3;与假设 a > 1/3 相矛盾,故舍去.
或a = 1,b = 1;与假设相符,故保留.
综上所述:a = 2/9,b = 43/9 或者 a = 1,b = 1 为正解.