已知二次函数f(x)=ax^2-2x+a+b的定义域为[0,3],而值域为[1,5]求a,b的值
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 12:24:54
已知二次函数f(x)=ax^2-2x+a+b的定义域为[0,3],而值域为[1,5]求a,b的值
要详细解答,快
要详细解答,快
f(x)在定义域内有三种情况:
(1)f(x)在【0,3】内单调递增.
则 f(0) = 1;f(3) = 5;解得 a = 10/9;b = -1/9.
此时函数f(x)的对称轴为 x = 9/10;显然f(x)在【0,3】内不是单调递增.
与假设矛盾,故舍去.
(2)f(x)在【0,3】内单调递减.
则 f(0) = 5;f(3) = 1;解得 a = 2/9;b = 43/9.
此时函数f(x)的对称轴为 x = 9/2;显然f(x)在【0,3】内是单调递减.
与假设相符
(3)f(x)在【0,3】内不是单调函数,即 f(x)对称轴 x = 1/a 在【0,3】之间
则 0 < 1/a < 3;a > 1/3.
此时f(x)在【0,1/a】单调递减,在【1/a,3】单调递增.
f(1/a) = 1,f(0) = 5;或者 f(1/a) = 1,f(3) = 5;
1)若 f(1/a) = 1,f(0) = 5;
解得 a = 1/4,b = 19/4;与假设 a > 1/3 相矛盾,故舍去.
2)若 f(1/a) = 1,f(3) = 5;
解得 a = 1/3,b = 23/3;与假设 a > 1/3 相矛盾,故舍去.
或a = 1,b = 1;与假设相符,故保留.
综上所述:a = 2/9,b = 43/9 或者 a = 1,b = 1 为正解.
(1)f(x)在【0,3】内单调递增.
则 f(0) = 1;f(3) = 5;解得 a = 10/9;b = -1/9.
此时函数f(x)的对称轴为 x = 9/10;显然f(x)在【0,3】内不是单调递增.
与假设矛盾,故舍去.
(2)f(x)在【0,3】内单调递减.
则 f(0) = 5;f(3) = 1;解得 a = 2/9;b = 43/9.
此时函数f(x)的对称轴为 x = 9/2;显然f(x)在【0,3】内是单调递减.
与假设相符
(3)f(x)在【0,3】内不是单调函数,即 f(x)对称轴 x = 1/a 在【0,3】之间
则 0 < 1/a < 3;a > 1/3.
此时f(x)在【0,1/a】单调递减,在【1/a,3】单调递增.
f(1/a) = 1,f(0) = 5;或者 f(1/a) = 1,f(3) = 5;
1)若 f(1/a) = 1,f(0) = 5;
解得 a = 1/4,b = 19/4;与假设 a > 1/3 相矛盾,故舍去.
2)若 f(1/a) = 1,f(3) = 5;
解得 a = 1/3,b = 23/3;与假设 a > 1/3 相矛盾,故舍去.
或a = 1,b = 1;与假设相符,故保留.
综上所述:a = 2/9,b = 43/9 或者 a = 1,b = 1 为正解.
已知二次函数f(x)=ax^2-2x+a+b的定义域为[0,3],而值域为[1,5]求a,b的值
已知函数f(x)=log3(ax^2+8x+b)/(x^2+1)的定义域为(-∞,+∞),值域为[0,2],求a,b的值
已知函数f(x)=ax^2+bx+3a+b为偶函数,其定义域为[a-1,2a],求f(x)的值域
已知函数f(x)=ax²+bx+3a+b为偶函数,其定义域为[a-1,2a],求f(x)的值域
已知函数f(x)=2asinx(2x-π/3)+b的定义域为[0,π/2],值域为[-5,1],求a,b的值
已知函数f(x)=2acos(2x-π/3)+b的定义域为[0,π/2],值域为[-5,1],求常数a,b的值
已知函数f(X)=asin(2X-π/3)+b的定义域为【[0,π/2],值域为[-5,1],求a和b的值
已知函数f(x)=2asin^x-acos2x+a+b的定义域为[0,π/2],值域为[-5,1],求常数a,b的值
已知函数f(x)=2asin(2x-π/6)+b的定义域为[0,π/2],值域为[-5,1],求常数a,b的值.
已知函数f(x)=2asin(2x-π/6)+b的定义域为[0,π/2],值域为[-5,1],求常数a,b的值
已知函数f(x)=2cos(2x-派/3)+b的定义域为(0,派/2)值域为(-5,1).求a和b的值
已知函数f(x)=2asin(2x-π/3)+b的值域为[-5,1]求a,b 定义域为[0,二分之π