证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g
证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g
证明如果两个可导函数f(x)和g(x),满足f(x)=0,g(0)=0,且f'(0)及g'(0)存在,g'(0)不等于0
g(x)=f(x)/x x≠0 g(x)=f′(0) x=0 知道f(x)有二阶连续导数 f(0)=0 证g可导且导函数
设f(x),g(x)是定义域为R的恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)
帮忙解道高数导数的题设函数f(x),g(x)满足f'(x)=g(x),g'(x)=2e^x - f(x),且f(0)=0
已知对任意实数x,有f(-x)= - f(x),g(-x)= - g(-x),且x>0时,f(x)的导数>0,g(x)的
已知f(x)与g(x)可导,且f(x)^2+g(x)^2不等于0,求y=[f(x)^2+g(x)^2]^(1/2)的导数
设f(x),g(x)是恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x)小于0.
设f(x),g(x)都是(-∞,+∞)上的可导函数,且f'(x)=g(x),g'(x)=f(x),f(0)=1,g(0)
若f(x)与g(x)可导,Lim f(x)=Limg(x)=0,且Limf(x)/g(x)=A,x趋于a.则
已知二次函数f(x)满足:f(0)=0,且f(x+1)=f(x)=x+1,g(x)=2f(-x)+x,
设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根