已知对任意实数x,有f(-x)= - f(x),g(-x)= - g(-x),且x>0时,f(x)的导数>0,g(x)的
已知对任意实数x,有f(-x)= - f(x),g(-x)= - g(-x),且x>0时,f(x)的导数>0,g(x)的
已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f(x)的导数>0,g(x)的导数>0,则
有关导数的选择题已知f(x)和g(x)是R上的可导函数,对任意实数x,都有f(x)*g(x)不等0和f(x)g'(x)>
已知f(x)=ln(x+1),g(x)=1-1/(x+1),试证:对任意的x>0,都有f(x)≥g(x)成立
对任意x属于r,都有f(x+1)=f(x),g(x+1)=-g(x),且h(x)=f(x)g(x
已知二次函数g(x)对任意实数x都满足g(x)=g(1-x),g(x)的最小值为-9/8且g(1)=-1,令f(x)=g
1.已知函数f(x),g(x)在R上有定义,对任意的x,y ∈R有f(x-y)=f(x)g(y)-g(x)f(y) 且f
已知函数f(x),g(x)在R上有定义,对任意的x,y属于R有f(x-y)=f(x)g(y)-g(x)f(y)且f(1)
导数公式(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)是则么推出来的?
已知函数g(x)=f(log2 x)-2^x(x>0)的一个零点为2,且对任意函数x,y都有f(x+y)=f(x)+f(
已知二次函数f(x)满足f(0)=0,且对任意x∈R总有f(x+1)=f(x)+x+1,g(x)=2f(-x)+x,求f
设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根