如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:07:15
如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一
象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为
象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为
连接AC,求出△BAC是等边三角形,推出AC=AB,求出△DC′B′是等边三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,连接BB′交x轴于E,求出AB′=AB=2,∠B′AE=60°,求出B′的坐标是(3,-
3
),设经过点B′反比例函数的解析式是y=
k
x
,代入求出即可.
连接AC,
∵四边形OABC是菱形,
∴CB=AB,∠CBA=∠AOC=60°,
∴△BAC是等边三角形,
∴AC=AB,
∵将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,
∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,
∵∠B′DC′=60°,
∴∠DC′B′=60°,
∴△DC′B′是等边三角形,
∴C′D=B′D,
∴CB=BD=B′C′,
即A和D重合,
连接BB′交x轴于E,
则AB′=AB=2,∠B′AE=180°-(180°-60°)=60°,
在Rt△AB′E中,∠B′AE=60°,AB′=2,
∴AE=1,B′E=3
,OE=2+1=3,
即B′的坐标是(3,-3 ),
设经过点B′反比例函数的解析式是y=k x
,
代入得:k=-3,
即y=-3x ,
故答案为:y=-3x
.
3
),设经过点B′反比例函数的解析式是y=
k
x
,代入求出即可.
连接AC,
∵四边形OABC是菱形,
∴CB=AB,∠CBA=∠AOC=60°,
∴△BAC是等边三角形,
∴AC=AB,
∵将四边形OABC沿直线0D翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,
∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,
∵∠B′DC′=60°,
∴∠DC′B′=60°,
∴△DC′B′是等边三角形,
∴C′D=B′D,
∴CB=BD=B′C′,
即A和D重合,
连接BB′交x轴于E,
则AB′=AB=2,∠B′AE=180°-(180°-60°)=60°,
在Rt△AB′E中,∠B′AE=60°,AB′=2,
∴AE=1,B′E=3
,OE=2+1=3,
即B′的坐标是(3,-3 ),
设经过点B′反比例函数的解析式是y=k x
,
代入得:k=-3,
即y=-3x ,
故答案为:y=-3x
.
如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一
如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,
如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至
如图所示,菱形OABC的顶点O为坐标原点,点A、B在第一象限,点C在x轴上,直线y=x经过点A,菱形面积是根号二
如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3)
如图,在平面直角坐标系中,矩形oabc的顶点o在坐标原点,顶点b的坐标为(6,2根号3),顶点a、c分别在x轴和y轴上,
一次函数如图,在直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A、C分别在x轴、y轴上,顶点B的坐标为(8,3),直
如图,菱形OABC的顶点O在坐标原点,顶点B在x轴的正半轴上,OA边在直线y=根号3乘以x上,AB边在直线y=负根号3乘
如图,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A,C分别在x轴.
如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,c
如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=kx(x>0)的图象经过顶点B,则k
已知菱形OABC的顶点O为坐标原点,点C(根号2,0)在x轴上直线y=x经过点A,菱形的面积是根号2,则经过点B