作业帮 > 数学 > 作业

设直线l:y=kx+m(其中k,m为整数)与椭圆x^2/16+y^2/12=1交于两点A,B,与双曲线交于两点C,D

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 00:34:34
设直线l:y=kx+m(其中k,m为整数)与椭圆x^2/16+y^2/12=1交于两点A,B,与双曲线交于两点C,D
是否存在直线l,使向量AC+向量BD=向量0,若存在,有几条这样的直线?若不存在,说明理由
设直线l:y=kx+m(其中k,m为整数)与椭圆x^2/16+y^2/12=1交于两点A,B,与双曲线交于两点C,D
把y=kx+m代入
x^2/16+y^2/12=1,化简得
(3+4k^2)x^2+8kmx+4m^2-48=0,
设A(x1,y1),B(x2,y2),
则x1+x2=-8km/(3+4k^2).
把y=kx+m代入
x^2/16-y^2/12=1,化简得
(3-4k^2)x^2-8kmx-4m^2-48=0,
设C(x3,y3),D(x4,y4),
则x3+x4=8km/(3-4k^2).
向量AC+向量BD=0
x3-x1+x4-x2=0
x1+x2=x3+x4
-8km/(3+4k^2)=8km/(3-4k^2),
∴k=0,或m=0.
这样的直线有无限多条