z=x ay,且|z-2|=根号3,则y x最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 15:39:55
某个复数的共轭复数不可能为实数是不是你的题有点问题?
(1)设z=a+b*i,则z共轭=a-b*i由已知:z*z共轭=(a+b*i)(a-b*i)=a^2+b^2=4(1)|a+b*i+1+根号3i|=|(a+1)+(根号3+b)*i|=4即(a+1)^
∵复数Z满足|Z-2|+|Z+i|=根号5,∴表示复数Z的点是到点P(2,0),Q(0,-1)的距离的和为根号5的点.而PQ长度为根号5,故表示复数Z的点在线段PQ上.|Z|就是线段OZ的长度,结合图
设z=x+yi,那么有z的共轭是x-yi|z|=根号(x^2+y^2)=根号5,即有x^2+y^2=5z^2+2z-=(x+yi)^2+2(x-yi)=x^2-y^2+2x+(2xy-2y)i为实数,
假设复数Z=a+bi,则由已知,得:(a-2)的平方+b的平方=4.①Z+4/Z=a+bi+〔4/(a+bi)〕=a+bi+〔4(a-bi)/(a+bi)(a-bi)〕=a+〔4a/(a的平方+b的平
设z=yi原式=yi/1+y——i²=-1
设Z=x+yi,(x,y∈R),则Z+2/Z=x+yi+2/(x+yi)=x+2x/(x²+y²)+[y-2y/(x²+y²)]i由Z+(2/Z)∈R得y-2y
设z=x+yi(x、y属于R)PS:这句话一定要写,以后高考要按此来给分!z^2+2z=x^2-y^2+2xyi+2x+2yi=(x^2-y^2+2x)+(2xy+2y)iPS:实部归实部,虚部归虚部
设z=x+yiz+1/z=(x+yi)+1/(x+yi)=(x+yi)+(x-yi)/(x²+y²)=x+x/(x²+y²)+[y-y/(x²+y&s
为了输入方便,将z^-用大写Z表示则z+Z=√6,(z-Z)*i=-√2设z=x+yi,则Z=x-yi∴2x=√6,即x=√6/22yi*i=-√2即2y=√2即y=√2/2(1)z=(√6/2)+(
由题意,(2+3i)*z能和实数比较大小,所以乘积一定是实数显然能和2+3i相乘得到实数的数,一定可以表示成其共轭复数的实数倍所以z一定可以表示为a(2-3i),其中a为实数所以(2+3i)*z=13
z=a+bi|z|=1a^2+b^2=1(1)|z-1/2|=√3/2(a-1/2)^2+b^2=3/4(2)(1)-(2)a-1/4=1/4a=1/2b=√3/2or-√3/2z=1/2+(√3/2
z=a+bi,a,b是实数则a^2+b^2=11/z=1/(a+bi)=(a-bi)/(a^2+b^2)=a-bi所以z+1/z=2az≠±i所以a≠0所以z+1/z≠0所以z+1/z=(z^2+1)
设z=a+bi,那么z+4/z=(a+bi)+4(a-bi)/(a^2+b^2)所以,b=4b/(a^2+b^2),如果b=0,那么|Z-2|=|a-2|=2,得到a=4(a=0不符合条件),如果b≠
设z=x+yi,x,y∈R,y≠0,则x^2+y^2=2,(1)x^2-y^2+2xyi+2x+2yi为实数,∴2xy+2y=0,x=-1.代入(1),y^2=1,y=土1.∴z=-1土i.
证明:设Z=a+bi,(其中a∈R,b∈R),则由|Z|=1,得a^2+b^2=1,则Z/(1-Z^2)=(a+bi)/[1-(a^2-b^2+2abi)]=(a+bi)/(2*b^2-2abi)=(
根据题意得x方+y方=10方=100又因为y=x+2即(x+2)方+x方=100解得x=6或-8所以z=(6,8)或z=(-8,-6)人老了错了不要怪我哦呵呵
1z=a+bi,z+2/z为实数a+bi+2/(a+bi)=a+bi+[2/(a^2+b^2)](a-bi)b-2b/(a^2+b^2)=0a^2+b^2=2|z|=√22z=a+√(2-a^2)i(
z=cost+isintcos2t+isin2t+2cost+2isint+cost-isint
a=1;z=1+iz+1/z=1+1/z=1+1/1-z=1+z/2+1=3/2+1/2z再问:可以明白一点不〜谢了!