spss线性相关相关性显著性检验
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:26:35
你第一图的数据样本是40第二图是25第三个图是21结果肯定不一样显著性水平,又称检验水准是人为确定的一般为0.05再问:表格下面的那行小字写的0.01不用管吗?再答:看相关系数,第一个图是0.439,
相关性分析会得出一个p值,如果p值
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
一般带一个星号的是水平0.05,两个星号的是0.01,没有星号的不显著
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
不相关.一般来说相关性大小要看显著性达到什么程度.显著性越小说明相关程度越高.显著性小于0.05则为显著先关,小于0.01则为极显著相关.大于0.05则说明不相关,或者相关性不强,也可以简单理解为不相
恋爱与月均生活费相关系数0.05,检验P值>0.05,二者无相关性.
你问的是2个问题吧,如果做一元线性回归,就不用检验相关性.下面只是简单说下操作,1、一元线性回归在spss里录入相应数据,自变量x,因变量Y,然后点击:analyze--regression--lin
原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答
如果矩阵是个列满秩,对应的向量组就是线性无关的,对于线性有关和无关你就看一个向量能不能由其他向量来表示,这是理解,在解题时方法有两种,一个是根据定义,一个是把其转化为方程组的问题,勒通过题目加深理解
用SPSS的独立样本T检验,可以两两比较或者使用SPSS中的方差分析,也可以判断这三组是否存在着显著性差异
是显著的,没什么好理解的如果没法理解kendall系数,干脆就让人帮你做分析我经常帮别人做这类的数据分析的
照道理是都需要做散点图的,只不过多元线性回归是采用多维散点图来看是否有线性关系
相关系数0.624大约属于中等量级的相关,在样本量足够大的情况下一般都会有显著性,你的情况应该是样本量偏小造成的.此外,pearson相关系数的正确性需要得到散点图的证实,你应该检查一下散点图,看看数
你是想调整数据呢还是想调整什么呢?线性回归时候,相关系数只是表明了各个系数之间的相关程度.但是自变量对因变量不显著的话,只能说明自变量多因变量影响不大,可以考虑换其他的跟因变量关系更加大的变量.或者在
"比如假设第一组的数据是838083第二组是896370"是说求这两个组的平均值是否差异显著么?首先,只比较两组数据的话,是用t检验.如果这两组是相关关系,用Paired-SamplesTtest;如
自己在报告里面手工加进去好了spss结果除了相关分析会自动加上去*之外其他的都不会加上去的
分数没用的你有什么问题直接说我经常帮别人做这类的数据分析的再问:那我加您,辛苦了,我的问题都挺基础的...
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值
首先得告诉你,在这里的两个变量属于定序变量,因为你是通过四个选项和五个选项来调查的,虽然这两个变量在现实中是数字型的,但是你是通过分段来调查的,所以只能算是定序变量.接下来做相关分析,只能选择spea