Rt△ABC中,CD是斜边AB上的高,求证,△ACD相似于△ABC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:29:24
Rt△ABC中,CD是斜边AB上的高,求证,△ACD相似于△ABC
如图,在Rt△ABC中,EF是中位线,CD斜边AB上的中线,求证:EF=CD

证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】

已知,在Rt三角形ABC中,EF是中位线,CD是斜边AB上的中线.求证;EF=DC

不知道你学过定理没,直角三角形斜边中线等于斜边一半,这是常识,如果要证明,你就作一矩形,它的对角线相等,又相互平分,所以,以其中三个顶点为直角三角形的斜边就是对角线,那么中线就是另一条对角线的一半,所

在Rt△ABC中,CD是斜边AB上的中线,MN是△ABC的中位线,求证:CD=MN

易证得CD=2分之一AB且MN=2分之一AB所以CD=MN

如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A.

证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).

如图所示,已知在Rt△ABC中,CD是斜边AB上的高,若AD=8cm,BD=2cm,求CD的长.

如图,∵CD⊥AB,∴∠ADC=∠BDC=90°.∴∠2+∠A=90°,∠1+∠B=90°.∵△ABC是Rt△,∴∠1+∠2=90°,∴∠A=∠1,∠B=∠2,∴△ADC∽△CDB,∴ADCD=CDB

已知:Rt△ABC中,CD是斜边上的高.试说明AC²=AD*AB

容易知道△ACD∽△ABC(两个角相等)所以AC/AB=AD/AC即AC²=AD*AB

已知:如图,在Rt△ABC中,CD是斜边AB上的高.

(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下

如图,在Rt△ABC中,CD是斜边AB上的高

证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC

已知,如图,在Rt△ABC中,CD是斜边AB上的高,

证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠

如图,已知在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:CD²=AD*DB

证明:因为CD是斜边AB上的高,所以角ADC=角BDC=90度,所以角A+角ACD=90度,因为角C=90度,所以角BCD+角ACD=90度,所以角A=角BCD(同角的余角相等),因为角ADC=角BD

在Rt△ABC中,CD是斜边AB中线,MN是中位线.试证明CD=MN.

再问:D、E、F分别是△ABC各边中点,DE、AF相交于点O.试证明DE与AF互相平分.再问:再问:帮下忙。。。。再答:等下再答:再问:再问:E为平行四边形ABCD边DC的延长线上的一点,且CE=DC

用矩形性质说明:在Rt△ABC中CD是斜边AB上的中线,说明CD=1/2AB

将三角形补充为一个矩形,使得两直角边为矩形的长与宽,由矩形对角线互相平分且相等可得CD=1/2AB

如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是

因为△ABC是直角三角形,CD是斜边AB上的中线,所以CD=1/2AB所以AB=4sinB=AC/AB=3/4

rt三角形abc中,cd是斜边ab上的高 求证:ac的平方=ad•ab

△ABC∽△ACD这个不用说了吧?AC:AB=AD:AC得:AC×AC=AB×AD.

如图在RT三角形ABC中,CD是斜边AB上的高,求证三角形ACD相似三角形ABC

用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.

已知:如图,D是Rt△ABC斜边AB上的一点,BD=CD.求证AD=CD.

∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵BD=CD,∴∠B=∠BCD,∴∠A=∠ACD(等角的余角相等),∴AD=CD.

在RT△ABC中,CD是斜边上的中线,CE⊥AB,已知AB=10cm,DE=2.5cm,求CD和∠DCE

∵△ABC是RT△,CD是斜边AB上的中线,∴CD=AB/2=5(cm),DE=5/2,(cm),AE=AD-DE=5/2(cm),BE=AB-AE=10-5/2=15/2(cm),∵CE⊥AB,∴C

如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosB=______.

∵在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4,由勾股定理得:BC=AB2−AC2=42−32=7,∴cosB=BCAB=74,故答案为:74.