Rt△ABC中,CD是斜边AB上的高,求证,△ACD相似于△ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:29:24
证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】
不知道你学过定理没,直角三角形斜边中线等于斜边一半,这是常识,如果要证明,你就作一矩形,它的对角线相等,又相互平分,所以,以其中三个顶点为直角三角形的斜边就是对角线,那么中线就是另一条对角线的一半,所
易证得CD=2分之一AB且MN=2分之一AB所以CD=MN
证明:在Rt△ABC中,∠A+∠B=90°(直角三角形两锐角互余),∵CD⊥AB,∴∠CDB=90°,∴∠BCD+∠B=90°(直角三角形两锐角互余),∴∠A=∠BCD(同角的余角相等).
如图,∵CD⊥AB,∴∠ADC=∠BDC=90°.∴∠2+∠A=90°,∠1+∠B=90°.∵△ABC是Rt△,∴∠1+∠2=90°,∴∠A=∠1,∠B=∠2,∴△ADC∽△CDB,∴ADCD=CDB
容易知道△ACD∽△ABC(两个角相等)所以AC/AB=AD/AC即AC²=AD*AB
EF=1/2ABCD=1/2AB所以CD=EF
(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下
证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC
证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠
证明:因为CD是斜边AB上的高,所以角ADC=角BDC=90度,所以角A+角ACD=90度,因为角C=90度,所以角BCD+角ACD=90度,所以角A=角BCD(同角的余角相等),因为角ADC=角BD
再问:D、E、F分别是△ABC各边中点,DE、AF相交于点O.试证明DE与AF互相平分.再问:再问:帮下忙。。。。再答:等下再答:再问:再问:E为平行四边形ABCD边DC的延长线上的一点,且CE=DC
将三角形补充为一个矩形,使得两直角边为矩形的长与宽,由矩形对角线互相平分且相等可得CD=1/2AB
因为△ABC是直角三角形,CD是斜边AB上的中线,所以CD=1/2AB所以AB=4sinB=AC/AB=3/4
△ABC∽△ACD这个不用说了吧?AC:AB=AD:AC得:AC×AC=AB×AD.
用角角边.因为角A加角ACD等于九十度角A加角B等于九十度所以角ACD等于B又因为角A等于角A且AC等于AC所以根据定理可得相似证明完毕.自己在写点步骤吧连贯一下.
∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵BD=CD,∴∠B=∠BCD,∴∠A=∠ACD(等角的余角相等),∴AD=CD.
∵△ABC是RT△,CD是斜边AB上的中线,∴CD=AB/2=5(cm),DE=5/2,(cm),AE=AD-DE=5/2(cm),BE=AB-AE=10-5/2=15/2(cm),∵CE⊥AB,∴C
∵在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4,由勾股定理得:BC=AB2−AC2=42−32=7,∴cosB=BCAB=74,故答案为:74.