随机变量X和Y独立同分布,记U=X Y, V=X-Y,则U和V
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:09:06
显然不独立.如果不知道U,那么V的分布就是V自身的分布,可以取值任何数.而如果知道了U,那么V在已知U的条件下的条件分布就不是V自身的分布了,因为取值不能超过U.
Y1和Y2不独立的情况下,它们函数的独立性也会受到相应的影响.但是你式子中表达的意思不太清楚,你写的g1g2分别是以x1x2为自变量的函数吗?你后面又问道Y1Y2之间的关系,是要提示它们是随机变量吗?
当s>0时做变换s=x^2+y^2,t=x/y,求其反函数.反函数有两支:x=t*sqrt(s/(1+t^2)),y=sqrt(s/(1+t^2))以及x=-t*sqrt(s/(1+t^2)),y=-
A写出联合概率分布函数P{(X,Y)=(1,1)}=P{(X,Y)=(1,-1)}=P{(X,Y)=(-1,1)}=P{(X,Y)=(-1,-1)}=1/4所以P{X=Y}=P{(X,Y)=(1,1)
X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/
把分布密度写出来,用卷积公式. 我算到下面这里也不会了:
(1)X-11Y-11/41/411/41/4(2)P(X>Y)=P(X=1,Y=-1)=1/4
因为X,Y独立同分布且X分布函数为F(x),故Z=max{X,Y}分布函数为:FZ(x)=P{Z≤x}=P{max{X,Y}≤x}=P{X≤x,Y≤x}=P{X≤x}P{Y≤x}=F(x)F(x)=(
题目有问题吧,y用不上了再问:���ǵ�һ�ʣ�再问:�ڶ�����������X��Y�������ͬ�ֲ�U[0,1]����Z=Y+X�ĸ����ܶ�再答:再答:�ڶ��ʻ���Ҫ��再问:�
Z=X+Y=1+2=3,P(Z=X+Y)=0
cov(U,V)=cov(x+y,x-y)=cov(x,x)-cov(x,y)+cov(y,x)-cov(y,y)变量X和Y相互独立-->cov(x,y)=cov(y,x)=0量X和Y相互同分布-->
Z=max(x,y)当x,y)独立时,F(z)=[Fx(z)]^2-->fz(z)=2fx(z)F(z)E[MAX(X,Y)]=∫2zf(z)F(z)dz(代入标准正态分布密度函数,经分步积分可以算出
∵cov(U,V)=E(U-EU)(V-EV)=E(X-Y-E(X-Y))E(X+Y-E(X+Y))=E(X-EX-Y+EY)E(X-EX+Y-EY)=E(X-EX)2-E(Y-EY)2=DX-DY由
Pxy是相关系数?应该是等于零
独立同分布,那0么分布函数相同,F(x)=F(y),至于这道题,严格讲B也是正确的,只是表达不同,你说的那道题我看了,A选项应该是[F(z)]^2因为p(maxX,Y)=P(X
P(X=x|X+Y=z)=P(X=x,Y=z-x)/P(X+Y=z)=(1-p)^(x-1)p(1-p)^(z-x-1)p/P(X+Y=z)再问:没有错,但是没有写完啊……P(X+Y=z)=?(考虑卷
下面给出利用特征函数所进行的严格证明.证明:记h_{X}(t)为随机变量X的特征函数(注:记号“h_{X}”中的“_”表示“下标”;下文中的记号“^”表示“上标”,用来表示幂运算,如2^n是2的n次方
这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图: