锐角△ABC中,BC=18,若BD⊥AC于D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:58:07
cos∠A=(AB²+AC²-BC²)/2AC·AB=(9+25-36)/2×3×5=-1/15<0所以∠A∈[90º,180º]所以△ABC是钝角三
由余弦定理有:cosA=(b^2+c^2-a^2)/2bc∵a^2=bc∴cosA=(b^2+c^2-bc)/2bc显然b^2+c^2-bc>b^2+c^2-2bc=(b-c)^2≥0所以cosA=(
(应该加上“AD=BC”和“AD、BE交于G”的条件结论才成立)证明:因为AD、BE是高所以AD⊥BC,BE⊥AC所以∠CAD+∠C=∠CBE+∠C=90°所以∠CAD=∠CBE因为∠ADC=∠BDG
因为tanA=3分之根号3,故A=30,因为tanB=根号3,故B=60
解三角形常用到余弦定理和正弦定理,可以利用已知的边和角求出未知的边和角,其中余弦定理可以表示成BC^2=AB^2+AC^2-2AB*AC*cosA,正弦定理表示成a/sinA=b/sinB=c/sin
由于在锐角△ABC中,BC=1,B=2A,故有π>A+2A>π2,且0<2A<π2,∴π4>A>π6.再利用正弦定理可得BCsinA=ACsinB,即1sinA=ACsin2A,∴AC=2cosA∈(
正弦定理:BC/sinA=AC/sinB∵∠B=2∠A∴BC/sinA=AC/sin2A1/sinA=AC/sin2Asin2A=sinA*AC2sinAcosA=sinA*AC∵sinA≠0∴2co
三角形ABC是钝角三角形.证明:作CD垂直AB于D.角A=30度,则CD=AC/2=1/2,AD=√(AC²-CD²)=√3/2.BD=√(BC²-CD²)=√
因为锐角△ABC中,若C=2B所以A=180°-3B∴0°<2B<90°0°<B<90°0°<180°-3B<90°∴30°<B<45°由正弦定理可得,cb=sinCsinB=2cosB∵22<cos
同学:你的结论似乎有误能够证明的是下面的结论:BC^2=AB2^+AC^2-2AB·AD证明要点:注意在两个直角三角形中运用勾股定理可得:BC^2=BD^2+CD^2=(AB-AD)^2+AC^2-A
当角B翻折时,B点与D点重合,DE与EC的和就是BC,也就是说等8,CD为AC的一半,故△CDE的周长为8+3=11;当A翻折时,A点与D点重合.同理DE与EC的和为AC=6,CD为BC的一半,所以C
BC=6△ABC的边BC上的高AD=_4_(12X2/6)0<x<2.4时:y=x².2.4≤x≤6时:y=4x-2x²/3=(-2/3)(x-3)²+6.x=3时,y=
假设是折叠角A,使得A与BC中点D重合.设AF=x,则DF=x,CF=12-x,CD=8,则因三角形CDF为直角三角形,有:DF²=CF²+CD²,即:x²=(
本题应该分两种情况:当点B落在AC的中点D处时.设DE=BE=X,则CE=8-X;CD=AC/2=3.∵CE²+CD²=DE²,即(8-X)²+9=X²
1.(b+c-a)tanA=√3bc(b+c-a)/(2bc)=(√3/2)/tanA=(√3/2)cosA/sinA由余弦定理得cosA=(b+c-a)/(2bc)cosA=(√3/2)cosA/s
∵△CEF∽△CBA,S△CEF=1/4S△ABC∴CE/CB=1/2连接BE∵AB是直径∴∠BEA=90°∴∠BEC=180°-90°=90°∴cosC=CE/CB=1/2∴∠C=60°望采纳,谢谢
做AD垂直BC于D,与MN相交于点FAF:AD=MN:BC因为S△ABC=12,BC=6,MN=x所以AD=4所以AF:4=x:6,AF=2/3x阴影部分面积y=MN·DF=x·(4-2/3x)整理得
(1)∵S△ABC=12,∴12BC•AD=12,又BC=6,∴AD=4;(2)设AD与MN相交于点H,∵MN∥BC,∴△AMN∽△ABC,∴AHAD=MNBC,即4−x4=x6,解得,x=125,∴
(1)|向量BC+向量BA|²=BC长的平方+BA长的平方+2×向量BC×向量BAcosB=向量BC×向量BA/BC长×BA长f(x)=2cosx+4cosB+5f(2B)=2cos2B+4
你可能是忙中出错了!题目中的AB=4√2,应该是AC=4√2. 否则条件不足.若是这样,则方法如下:过B作BE⊥AC交AC于E,则:AD与BE的交点就是点M,再过M作AB的垂线,垂足就是点N.下面证明