p是矩形abcd内一点,且pa=4,pb=1,pc=5求的长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:32:10
p是矩形abcd内一点,且pa=4,pb=1,pc=5求的长
P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是

错误.应该是S1+S3=S2+S4再问:我知道是S1+S3=S2+S4,能够证明S1*S3不等于S2*S4吗再答:可以用极限法啊,当P点无限接近BC中点时,S1*S3=S1平方,S2*S4=0,所以这

已知点P是矩形ABCD外一点,PA⊥面ABCD,且PB,PD与平面ABCD所成角分别为45°,30°,PA=α,求点P到

2分之(根号7)α    PA⊥面ABCD,且PB,PD与平面ABCD所成角分别为45°,30°,PA=α,  可以知道AD=(根3)α.&

如图 p是矩形ABCD内一点,且PA=4,PB=1,PC=5,求PD.

过P作MN⊥AD于M,交BC于N,∵ABCD是矩形,∴四边形ABNM与MNCD都是矩形,∴PA^2=PM^2+AM^2,PC^2=PN^2+CN^2,∴PA^2+PC^2=PM^2+PN^2+AM^2

已知,如图,P是矩形ABCD外一点,且PD⊥PB,求证;PA⊥PC

证明:连接AC,BD相交于点O,连接PO∵∠BPD=90°∴PO=BO=DO∵四边形ABCD是矩形∴AO=CO=BO∴PO=AO=CO∴∠APC=90°即AP⊥CP

如图,P是矩形ABCD内一点,且PA=7.PB=8,PC=4 6 求PD

过P做EF//AD,交AB于点E,交CD于点F过P做GH//AB,交AD于点G,交BC于点H因为矩形ABCD所以角AEP=角PFD=90度,GP=AE=DF,PH=BE=FC由勾股定理得:PA^2=P

已知,如图,P是矩形ABCD外的一点,且PD垂直PB,求证PA垂直PC

连结AC,BD相交于点O.再连结PO.因为PD垂直PB,故PO=OD=OB.又因为OC=OA=OB;则PO=OC=OA;所以PA垂直PC.

矩形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,垂足为P.求证:PB⊥PD

证明:∵四边形ABCD为矩形.∴AC=BD;AO=OC;BO=OD.又∵PA⊥PC.∴PO=AC/2.(直角三角形斜边的中线等斜边的一半)∴PO=BD/2.(等量代换)∴∠BPD=90°,即PB⊥PD

如图,P是矩形ABCD内的一点,PA=PB,PC与PD相等吗?为什么?

因为PA=PB所以∠PAB=∠PBA因为在矩形ABCD中所以∠DAB=∠CBA所以∠DAB-∠PAB=∠CBA-∠PBA所以∠DAP=∠CBP在△DAP与△CBP中DA=CB∠DAP=∠CBPPA=P

P是矩形ABCD内一点,PA=3,PB=4,PC=5,试求PD是多少?

P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=?∵PA^+PC^=PB^+PD^∴PD^=PA^+PC^-PB^=3^+5^-4^=9+25-16=18∴PD=3√2下面是对这个定理

已知:如图,P是矩形ABCD内的一点,PA=PB,求证:PC=PD

因为PA=PB所以∠PAB=∠PBA因为在矩形ABCD中所以∠DAB=∠CBA所以∠DAB-∠PAB=∠CBA-∠PBA所以∠DAP=∠CBP在△DAP与△CBP中DA=CB∠DAP=∠CBPPA=P

如图,P是矩形ABCD内一点,且PA=4,PB=1,PC=5,求PD的长

过P做四边边的垂线,分别交AB、BC、CD、DA于EFGH∵ABCD是矩形∴PE=BF,PF=BE,PG=CF,DF=AE∴有:AP²=AE²+BF².①BP²

如图,P是矩形ABCD内一点,且PA=4,PB=1,PC=5,求PD的长.

/>∵ABCD是矩形∴PA²+PC²=PB²+PD²∵PA=4,PB=1,PC=5∴4²+5²=1²+PD²∴PD

如图,P是矩形ABCD内的一点,PA=PB.PC与PD相等吗?为什么?

你的图呢?算了,没图也可以.相等.可以过点P做AB的垂线,即可说明这条垂线是AB的垂直平分线.该线肯定垂直CD,易证此线也是CD的垂直平分线,所以PC=PD.

如图,P是矩形ABCD内一点且PA=4,PB=1,求PD的长

过P做两边的垂线,交AB、BC、CD、DA于EFGHABCD是矩形,所以PE=BF,PF=BE,PG=CF,DF=AEAP^2=AE^2+BF^2.①BP^2=BE^2+BF^2.②CP^2=BE^2

如图,P是矩形ABCD所在平面内一点,且PA=PD,求证:PB=PC

由PA=PD先推出角PAB=角PDC.再根据边角边推出两个三角形全等,推出PB=PC

P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是5

设P到A点的距离PA=x,AB=y且AD=z,则∵PA⊥平面ABCD,AB、AD、BC⊂平面ABCD,∴PA⊥AB,PA⊥AD,PA⊥BC∵BC⊥AB,AB∩PA=A,∴BC⊥平面PAB,可得BC⊥P

如图,点P为矩形ABCD内一点,PB=PC,求证:PA=PD

∵ABCD是矩形∴∠ABC=∠DCB=90°AB=CD∵PB=PC∴∠PBC=∠PCB∴∠ABC-∠PBC=∠DCB-∠PCB即∠ABP=∠DCP∵AB=CD,PB=PC∴△ABP≌△DCP(SAS)

1、P是矩形ABCD内一点,若PA=3,PB=4,PC=5,那么PD=

1题3倍根号2;5题2.4;8题7/8,只会这三个,

P是四边形ABCD内一点,且PA:PB:PC=2:1:3证明角APB为135°

ABCD是正方形吧?将三角形ABP绕点B顺时针旋转90度,可以得到一个等腰直角三角形,和一个直角三角形.

数学题:P是正方形ABCD内一点,且PA:PB:PC=1:2:3,求

∠APB=135°设PA=a,PB=2a,PC=3a把△ABP绕点B顺时针旋转90°得△AEQ∵正方形ABCD中,AB=BC∴E与C重合∵△ABP≌△CBQ∴CQ=AP=a,BQ=BP=2a∴∠ABP